↓ Skip to main content

Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking

Overview of attention for article published in Journal of NeuroEngineering and Rehabilitation, July 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#12 of 1,390)
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Mentioned by

news
16 news outlets
blogs
1 blog
twitter
15 X users

Citations

dimensions_citation
107 Dimensions

Readers on

mendeley
208 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking
Published in
Journal of NeuroEngineering and Rehabilitation, July 2018
DOI 10.1186/s12984-018-0410-y
Pubmed ID
Authors

Sangjun Lee, Jinsoo Kim, Lauren Baker, Andrew Long, Nikos Karavas, Nicolas Menard, Ignacio Galiana, Conor J. Walsh

Abstract

Soft exosuits are a recent approach for assisting human locomotion, which apply assistive torques to the wearer through functional apparel. Over the past few years, there has been growing recognition of the importance of control individualization for such gait assistive devices to maximize benefit to the wearer. In this paper, we present an updated version of autonomous multi-joint soft exosuit, including an online parameter tuning method that customizes control parameters for each individual based on positive ankle augmentation power. The soft exosuit is designed to assist with plantarflexion, hip flexion, and hip extension while walking. A mobile actuation system is mounted on a military rucksack, and forces generated by the actuation system are transmitted via Bowden cables to the exosuit. The controller performs an iterative force-based position control of the Bowden cables on a step-by-step basis, delivering multi-articular (plantarflexion and hip flexion) assistance during push-off and hip extension assistance in early stance. To individualize the multi-articular assistance, an online parameter tuning method was developed that customizes two control parameters to maximize the positive augmentation power delivered to the ankle. To investigate the metabolic efficacy of the exosuit with wearer-specific parameters, human subject testing was conducted involving walking on a treadmill at 1.50 m s- 1 carrying a 6.8-kg loaded rucksack. Seven participants underwent the tuning process, and the metabolic cost of loaded walking was measured with and without wearing the exosuit using the individualized control parameters. The online parameter tuning method was capable of customizing the control parameters, creating a positive ankle augmentation power map for each individual. The subject-specific control parameters and resultant assistance profile shapes varied across the study participants. The exosuit with the wearer-specific parameters significantly reduced the metabolic cost of load carriage by 14.88 ± 1.09% (P = 5 × 10- 5) compared to walking without wearing the device and by 22.03 ± 2.23% (P = 2 × 10- 5) compared to walking with the device unpowered. The autonomous multi-joint soft exosuit with subject-specific control parameters tuned based on positive ankle augmentation power demonstrated the ability to improve human walking economy. Future studies will further investigate the effect of the augmentation-power-based control parameter tuning on wearer biomechanics and energetics.

X Demographics

X Demographics

The data shown below were collected from the profiles of 15 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 208 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 208 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 47 23%
Researcher 26 13%
Student > Master 26 13%
Student > Bachelor 14 7%
Student > Doctoral Student 12 6%
Other 29 14%
Unknown 54 26%
Readers by discipline Count As %
Engineering 110 53%
Medicine and Dentistry 11 5%
Sports and Recreations 7 3%
Computer Science 4 2%
Nursing and Health Professions 3 1%
Other 12 6%
Unknown 61 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 139. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 October 2018.
All research outputs
#290,363
of 24,998,746 outputs
Outputs from Journal of NeuroEngineering and Rehabilitation
#12
of 1,390 outputs
Outputs of similar age
#6,385
of 332,825 outputs
Outputs of similar age from Journal of NeuroEngineering and Rehabilitation
#2
of 30 outputs
Altmetric has tracked 24,998,746 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,390 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,825 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.