↓ Skip to main content

Limited Changes in Spinal Lamina I Dorsal Horn Neurons following the Cytotoxic Ablation of Non-Peptidergic C-Fibers

Overview of attention for article published in Molecular Pain, September 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Limited Changes in Spinal Lamina I Dorsal Horn Neurons following the Cytotoxic Ablation of Non-Peptidergic C-Fibers
Published in
Molecular Pain, September 2015
DOI 10.1186/s12990-015-0060-z
Pubmed ID
Authors

Abeer W. Saeed, Sophie A. Pawlowski, Alfredo Ribeiro-da-Silva

Abstract

Non-peptidergic nociceptive neurons are a sub-population of small diameter primary sensory neurons that comprise approximately 50 % of the C fiber population. Together with the peptidergic sub-population, they transmit nociceptive information from the periphery to the superficial dorsal horn of the spinal cord. Despite the numerous studies investigating the role of the non-peptidergic primary afferents, their role in normal nociception and in pain remains poorly understood. Our lab has previously demonstrated that, in rat models of neuropathic and inflammatory pain, there is a de novo expression of substance P receptors (NK-1r) by lamina I pyramidal projection neurons, a neuronal population that normally does not express these receptors. In this study, we used a ribosomal toxin, saporin, conjugated to the lectin IB4 to selectively ablate the non-peptidergic nociceptive C fibers, to investigate if the loss of these fibers was enough to induce a change in NK-1r expression by lamina I projection neurons. IB4-saporin treatment led to the permanent ablation of the IB4-positive afferents but also to a small non-significant reduction in CGRP-positive afferents. An overall increase in immunoreactivity for the NK-1r was observed in lamina I projection neurons, however, the lack of non-peptidergic afferents did not increase the number of lamina I pyramidal projection neurons immunoreactive for the receptor. Our results demonstrate that the deletion of the non-peptidergic afferents, at the L4-L5 spinal levels, is not sufficient to trigger the de novo expression of NK-1r by projection pyramidal neurons but increases the expression of NK-1r in fusiform and multipolar projection neurons. Furthermore, our data suggest that a neuropathic component is essential to trigger the expression of NK-1r by pyramidal neurons.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Sweden 1 3%
Germany 1 3%
Unknown 28 90%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 39%
Researcher 4 13%
Student > Master 4 13%
Professor 2 6%
Student > Doctoral Student 2 6%
Other 1 3%
Unknown 6 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 35%
Neuroscience 8 26%
Biochemistry, Genetics and Molecular Biology 2 6%
Medicine and Dentistry 2 6%
Chemistry 1 3%
Other 0 0%
Unknown 7 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 March 2016.
All research outputs
#20,655,488
of 25,371,288 outputs
Outputs from Molecular Pain
#477
of 669 outputs
Outputs of similar age
#205,229
of 279,887 outputs
Outputs of similar age from Molecular Pain
#10
of 14 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 669 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,887 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.