↓ Skip to main content

Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage

Overview of attention for article published in BMC Genomics, September 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
4 X users
facebook
3 Facebook pages

Citations

dimensions_citation
90 Dimensions

Readers on

mendeley
88 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage
Published in
BMC Genomics, September 2015
DOI 10.1186/s12864-015-1851-3
Pubmed ID
Authors

Boon Huat Cheah, Kalaivani Nadarajah, Mayur Dashrath Divate, Ratnam Wickneswari

Abstract

Developing drought-tolerant rice varieties with higher yield under water stressed conditions provides a viable solution to serious yield-reduction impact of drought. Understanding the molecular regulation of this polygenic trait is crucial for the eventual success of rice molecular breeding programmes. microRNAs have received tremendous attention recently due to its importance in negative regulation. In plants, apart from regulating developmental and physiological processes, microRNAs have also been associated with different biotic and abiotic stresses. Hence here we chose to analyze the differential expression profiles of microRNAs in three drought treated rice varieties: Vandana (drought-tolerant), Aday Sel (drought-tolerant) and IR64 (drought-susceptible) in greenhouse conditions via high-throughput sequencing. Twenty-six novel microRNA candidates involved in the regulation of diverse biological processes were identified based on the detection of miRNA*. Out of their 110 predicted targets, we confirmed 16 targets from 5 novel microRNA candidates. In the differential expression analysis, mature microRNA members from 49 families of known Oryza sativa microRNA were differentially expressed in leaf and stem respectively with over 28 families having at least a similar mature microRNA member commonly found to be differentially expressed between both tissues. Via the sequence profiling data of leaf samples, we identified osa-miR397a/b, osa-miR398b, osa-miR408-5p and osa-miR528-5p as being down-regulated in two drought-tolerant rice varieties and up-regulated in the drought-susceptible variety. These microRNAs are known to be involved in regulating starch metabolism, antioxidant defence, respiration and photosynthesis. A wide range of biological processes were found to be regulated by the target genes of all the identified differentially expressed microRNAs between both tissues, namely root development (5.3-5.7 %), cell transport (13.2-18.4 %), response to stress (10.5-11.3 %), lignin catabolic process (3.8-5.3 %), metabolic processes (32.1-39.5 %), oxidation-reduction process (9.4-13.2 %) and DNA replication (5.7-7.9 %). The predicted target genes of osa-miR166e-3p, osa-miR166h-5p*, osa-miR169r-3p* and osa-miR397a/b were found to be annotated to several of the aforementioned biological processes. The experimental design of this study, which features rice varieties with different drought tolerance and tissue specificity (leaf and stem), has provided new microRNA profiling information. The potentially regulatory importance of the microRNA genes mentioned above and their target genes would require further functional analyses.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 88 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Chile 1 1%
Unknown 87 99%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 17%
Student > Ph. D. Student 14 16%
Student > Master 12 14%
Student > Bachelor 9 10%
Professor > Associate Professor 5 6%
Other 11 13%
Unknown 22 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 41 47%
Biochemistry, Genetics and Molecular Biology 12 14%
Engineering 4 5%
Computer Science 2 2%
Social Sciences 1 1%
Other 2 2%
Unknown 26 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 June 2016.
All research outputs
#12,936,258
of 22,828,180 outputs
Outputs from BMC Genomics
#4,566
of 10,655 outputs
Outputs of similar age
#119,178
of 268,887 outputs
Outputs of similar age from BMC Genomics
#148
of 330 outputs
Altmetric has tracked 22,828,180 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,655 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 268,887 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 330 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.