↓ Skip to main content

Role of high-mobility group box 1 in methamphetamine-induced activation and migration of astrocytes

Overview of attention for article published in Journal of Neuroinflammation, September 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • Good Attention Score compared to outputs of the same age and source (79th percentile)

Mentioned by

blogs
1 blog
twitter
2 X users
googleplus
1 Google+ user

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Role of high-mobility group box 1 in methamphetamine-induced activation and migration of astrocytes
Published in
Journal of Neuroinflammation, September 2015
DOI 10.1186/s12974-015-0374-9
Pubmed ID
Authors

Yuan Zhang, Tiebing Zhu, Xiaotian Zhang, Jie Chao, Gang Hu, Honghong Yao

Abstract

Mounting evidence has indicated that high-mobility group box 1 (HMGB1) is involved in cell activation and migration. Our previous study demonstrated that methamphetamine mediates activation of astrocytes via sigma-1 receptor (σ-1R). However, the elements downstream of σ-1R in this process remain poorly understood. Thus, we examined the molecular mechanisms involved in astrocyte activation and migration induced by methamphetamine. The expression of HMGB1, σ-1R, and glial fibrillary acidic protein (GFAP) was examined by western blot and immunofluorescent staining. The phosphorylation of cell signaling pathways was detected by western blot, and cell migration was examined using a wound-healing assay in rat C6 astroglia-like cells transfected with lentivirus containing red fluorescent protein (LV-RFP) as well as in primary human astrocytes. The role of HMGB1 in astrocyte activation and migration was validated using a siRNA approach. Exposure of C6 cells to methamphetamine increased the expression of HMGB1 via the activation of σ-1R, Src, ERK mitogen-activated protein kinase, and downstream NF-κB p65 pathways. Moreover, methamphetamine treatment resulted in increased cell activation and migration in C6 cells and primary human astrocytes. Knockdown of HMGB1 in astrocytes transfected with HMGB1 siRNA attenuated the increased cell activation and migration induced by methamphetamine, thereby implicating the role of HMGB1 in the activation and migration of C6 cells and primary human astrocytes. This study demonstrated that methamphetamine-mediated activation and migration of astrocytes involved HMGB1 up-regulation through an autocrine mechanism. Targeting HMGB1 could provide insights into the development of a potential therapeutic approach for alleviation of cell activation and migration of astrocytes induced by methamphetamine.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 21%
Student > Ph. D. Student 5 18%
Student > Bachelor 4 14%
Professor 3 11%
Researcher 2 7%
Other 3 11%
Unknown 5 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 21%
Biochemistry, Genetics and Molecular Biology 3 11%
Psychology 2 7%
Neuroscience 2 7%
Computer Science 1 4%
Other 2 7%
Unknown 12 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 March 2016.
All research outputs
#3,180,955
of 22,828,180 outputs
Outputs from Journal of Neuroinflammation
#639
of 2,630 outputs
Outputs of similar age
#43,905
of 267,011 outputs
Outputs of similar age from Journal of Neuroinflammation
#9
of 43 outputs
Altmetric has tracked 22,828,180 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,630 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,011 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 43 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 79% of its contemporaries.