↓ Skip to main content

Metabolic modeling predicts metabolite changes in Mycobacterium tuberculosis

Overview of attention for article published in BMC Systems Biology, September 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
88 Mendeley
citeulike
6 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Metabolic modeling predicts metabolite changes in Mycobacterium tuberculosis
Published in
BMC Systems Biology, September 2015
DOI 10.1186/s12918-015-0206-7
Pubmed ID
Authors

Christopher D. Garay, Jonathan M. Dreyfuss, James E. Galagan

Abstract

Mycobacterium tuberculosis (MTB) is the causal agent of the disease tuberculosis (TB). Metabolic adaptations are thought to be critical to the survival of MTB during pathogenesis. Computational tools that can be used to study MTB metabolism in silico and prioritize resource-intensive experimental work could significantly accelerate research. We have developed E-Flux-MFC, an enhancement of our original E-Flux method that enables the prediction of changes in the production of external and internal metabolites corresponding to gene expression measurements. We have used this method to simulate the changes in the metabolic state of Mycobacterium tuberculosis (MTB). We have validated the accuracy of E-Flux-MFC for predicting changes in lipids and metabolites during a hypoxia time course using previously published metabolomics and transcriptomics data. We have further validated the accuracy of the method for predicting changes in MTB lipids following the deletion and induction of two well-studied transcription factors (TFs). We have applied the method to predict the metabolic impact of the induction of each of the approximately 180 MTB TFs using a previously generated and publically available expression data set. E-flux-MFC can be used to study global changes in MTB metabolites from gene expression data associated with environmental and genetic perturbations. The application of this method to a data set of MTB TF perturbations provides a resource for studying the large number of TFs whose functions remain unknown. Most TFs impact metabolites indirectly through the propagation of gene expression changes through the regulatory network rather than through their direct regulons. E-Flux-MFC is also applicable to any organism for which accurate metabolic models are available.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 88 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Russia 1 1%
South Africa 1 1%
Unknown 86 98%

Demographic breakdown

Readers by professional status Count As %
Student > Master 26 30%
Researcher 18 20%
Student > Ph. D. Student 9 10%
Student > Bachelor 5 6%
Professor > Associate Professor 5 6%
Other 10 11%
Unknown 15 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 24 27%
Biochemistry, Genetics and Molecular Biology 19 22%
Medicine and Dentistry 7 8%
Computer Science 4 5%
Immunology and Microbiology 3 3%
Other 11 13%
Unknown 20 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 September 2015.
All research outputs
#14,825,310
of 22,828,180 outputs
Outputs from BMC Systems Biology
#600
of 1,142 outputs
Outputs of similar age
#135,302
of 245,084 outputs
Outputs of similar age from BMC Systems Biology
#18
of 29 outputs
Altmetric has tracked 22,828,180 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,142 research outputs from this source. They receive a mean Attention Score of 3.6. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 245,084 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 29 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.