↓ Skip to main content

Bone marrow derived mesenchymal stem cells ameliorate inflammatory response in an in vitro model of familial hemophagocytic lymphohistiocytosis 2

Overview of attention for article published in Stem Cell Research & Therapy, July 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Bone marrow derived mesenchymal stem cells ameliorate inflammatory response in an in vitro model of familial hemophagocytic lymphohistiocytosis 2
Published in
Stem Cell Research & Therapy, July 2018
DOI 10.1186/s13287-018-0941-y
Pubmed ID
Authors

Handan Sevim, Yusuf Çetin Kocaefe, Mehmet Ali Onur, Duygu Uçkan-Çetinkaya, Özer Aylin Gürpınar

Abstract

Familial hemophagocytic lymphohistiocytosis 2 (FHL2) is the most common familial type of hemophagocytic lymphohistiocytosis with immune dysregulation. FHL2 patients have mutations in the perforin gene which cause overactivation and proliferation of cytotoxic T lymphocytes and natural killer cells. Perforin is the key component of the cytolytic granule response function of cytotoxic T lymphocytes and natural killer cells. Perforin dysfunction causes a cytotoxic immune deficiency with a clinical outcome of uncontrolled and continuous immune stimulation response. This excessive stimulation leads to continuous systemic inflammation and, ultimately, multiorgan failure. Radical therapy is hematopoietic stem cell transplantation which is limited by the availability of a donor. Exacerbations of inflammatory attacks require a palliative immunosuppressive regimen. There is a need for an alternative or adjuvant therapy to maintain these patients when immunosuppression is ineffective or a donor is not available. Beneficial actions of mesenchymal stem cells (MSCs) have been shown in autoimmune diseases in clinical trials and are attributed to their immune-modulatory properties. This study aimed to assess the immune-modulatory effect of MSCs in an in-vitro model of FHL2. We generated a targeted mutation in the perforin gene of NK92 cells to create an in-vitro FLH2 model using Crispr/Cas technology. A coculture setup was employed to assess the immunomodulatory efficacy of MSCs. Engineered NK92 clones did not show PRF1 mRNA expression and failed to secrete perforin upon phorbol myristate acetate-ionomycin stimulation, providing evidence for a valid FHL2 model. Coculture media of the engineered cells were investigated for the abundance of several cytokines. Coculture with MSCs revealed a reduction in major proinflammatory cytokines and an induction in anti-inflammatory and immunomodulatory cytokines compared to the parental NK92 cells. This study shows the ameliorating effect of MSCs as an adjuvant immune modulator toward the therapy of FHL2 patients. MSCs are supportive therapy candidates for FHL2 patients under circumstances where prolonged immunosuppression is required to gain time before allogeneic hematopoietic stem cell transplantation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 19%
Other 5 14%
Student > Bachelor 5 14%
Student > Master 5 14%
Student > Doctoral Student 3 8%
Other 6 16%
Unknown 6 16%
Readers by discipline Count As %
Medicine and Dentistry 10 27%
Biochemistry, Genetics and Molecular Biology 5 14%
Agricultural and Biological Sciences 5 14%
Engineering 3 8%
Psychology 3 8%
Other 5 14%
Unknown 6 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 July 2018.
All research outputs
#17,985,001
of 23,096,849 outputs
Outputs from Stem Cell Research & Therapy
#1,604
of 2,437 outputs
Outputs of similar age
#236,896
of 329,174 outputs
Outputs of similar age from Stem Cell Research & Therapy
#39
of 62 outputs
Altmetric has tracked 23,096,849 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,437 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,174 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 62 others from the same source and published within six weeks on either side of this one. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.