↓ Skip to main content

Inference of spatiotemporal effects on cellular state transitions from time-lapse microscopy

Overview of attention for article published in BMC Systems Biology, September 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Inference of spatiotemporal effects on cellular state transitions from time-lapse microscopy
Published in
BMC Systems Biology, September 2015
DOI 10.1186/s12918-015-0208-5
Pubmed ID
Authors

Michael K. Strasser, Justin Feigelman, Fabian J. Theis, Carsten Marr

Abstract

Time-lapse microscopy allows to monitor cell state transitions in a spatiotemporal context. Combined with single cell tracking and appropriate cell state markers, transition events can be observed within the genealogical relationship of a proliferating population. However, to infer the correlations between the spatiotemporal context and cell state transitions, statistical analysis with an appropriately large number of samples is required. Here, we present a method to infer spatiotemporal features predictive of the state transition events observed in time-lapse microscopy data. We first formulate a generative model, simulate different scenarios, such as time-dependent or local cell density-dependent transitions, and illustrate how to estimate univariate transition rates. Second, we formulate the problem in a machine-learning language using regularized linear models. This allows for a multivariate analysis and to disentangle indirect dependencies via feature selection. We find that our method can accurately recover the relevant features and reconstruct the underlying interaction kernels if a critical number of samples is available. Finally, we explicitly use the tree structure of the data to validate if the estimated model is sufficient to explain correlated transition events of sister cells. Using synthetic cellular genealogies, we prove that our method is able to correctly identify features predictive of state transitions and we moreover validate the chosen model. Our approach allows to estimate the number of cellular genealogies required for the proposed spatiotemporal statistical analysis, and we thus provide an important tool for the experimental design of challenging single cell time-lapse microscopy assays.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 2 7%
United States 1 4%
Unknown 25 89%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 32%
Student > Ph. D. Student 7 25%
Student > Master 4 14%
Student > Bachelor 2 7%
Other 1 4%
Other 2 7%
Unknown 3 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 39%
Computer Science 6 21%
Environmental Science 2 7%
Immunology and Microbiology 2 7%
Biochemistry, Genetics and Molecular Biology 1 4%
Other 2 7%
Unknown 4 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 October 2015.
All research outputs
#14,825,907
of 22,829,083 outputs
Outputs from BMC Systems Biology
#600
of 1,142 outputs
Outputs of similar age
#151,324
of 274,256 outputs
Outputs of similar age from BMC Systems Biology
#18
of 29 outputs
Altmetric has tracked 22,829,083 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,142 research outputs from this source. They receive a mean Attention Score of 3.6. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 274,256 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 29 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.