↓ Skip to main content

Impact of kinetic isotope effects in isotopic studies of metabolic systems

Overview of attention for article published in BMC Systems Biology, September 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

facebook
2 Facebook pages

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
58 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Impact of kinetic isotope effects in isotopic studies of metabolic systems
Published in
BMC Systems Biology, September 2015
DOI 10.1186/s12918-015-0213-8
Pubmed ID
Authors

Pierre Millard, Jean-Charles Portais, Pedro Mendes

Abstract

Isotope labeling experiments (ILEs) are increasingly used to investigate the functioning of metabolic systems. Some enzymes are subject to kinetic isotope effects (KIEs) which modulate reaction rates depending on the isotopic composition of their substrate(s). KIEs may therefore affect both the propagation of isotopes through metabolic networks and their operation, and ultimately jeopardize the biological value of ILEs. However, the actual impact of KIEs on metabolism has never been investigated at the system level. First, we developed a framework which integrates KIEs into kinetic and isotopic models of metabolism, thereby accounting for their system-wide effects on metabolite concentrations, metabolic fluxes, and isotopic patterns. Then, we applied this framework to assess the impact of KIEs on the central carbon metabolism of Escherichia coli in the context of (13)C-ILEs, under different situations commonly encountered in laboratories. Results showed that the impact of KIEs strongly depends on the label input and on the variable considered but is significantly lower than expected intuitively from measurements on isolated enzymes. The global robustness of both the metabolic operation and isotopic patterns largely emerge from intrinsic properties of metabolic networks, such as the distribution of control across the network and bidirectional isotope exchange. These results demonstrate the necessity of investigating the impact of KIEs at the level of the entire system, contradict previous hypotheses that KIEs would have a strong effect on isotopic distributions and on flux determination, and strengthen the biological value of (13)C-ILEs. The proposed modeling framework is generic and can be used to investigate the impact of all the isotopic tracers ((2)H, (13)C, (15)N, (18)O, etc.) on different isotopic datasets and metabolic systems. By allowing the integration of isotopic and metabolomics data collected under stationary and/or non-stationary conditions, it may also assist interpretations of ILEs and facilitate the development of more accurate kinetic models with improved explicative and predictive capabilities.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Singapore 1 2%
Unknown 57 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 19%
Student > Ph. D. Student 10 17%
Student > Bachelor 7 12%
Student > Master 7 12%
Student > Doctoral Student 6 10%
Other 5 9%
Unknown 12 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 19%
Agricultural and Biological Sciences 8 14%
Engineering 5 9%
Chemistry 4 7%
Earth and Planetary Sciences 3 5%
Other 14 24%
Unknown 13 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 December 2017.
All research outputs
#15,866,607
of 23,577,654 outputs
Outputs from BMC Systems Biology
#644
of 1,139 outputs
Outputs of similar age
#162,970
of 276,368 outputs
Outputs of similar age from BMC Systems Biology
#20
of 28 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,139 research outputs from this source. They receive a mean Attention Score of 3.6. This one is in the 32nd percentile – i.e., 32% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 276,368 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.