↓ Skip to main content

Transcriptional responses and flavor volatiles biosynthesis in methyl jasmonate-treated tea leaves

Overview of attention for article published in BMC Plant Biology, September 2015
Altmetric Badge

Mentioned by

1 tweeter


52 Dimensions

Readers on

62 Mendeley
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Transcriptional responses and flavor volatiles biosynthesis in methyl jasmonate-treated tea leaves
Published in
BMC Plant Biology, September 2015
DOI 10.1186/s12870-015-0609-z
Pubmed ID

Jiang Shi, ChengYing Ma, DanDan Qi, HaiPeng Lv, Ting Yang, QunHua Peng, ZongMao Chen, Zhi Lin


Tea (Camellia sinensis) has long been consumed worldwide for its amazing flavor and aroma. Methyl jasmonate (MeJA), which acts as an effective elicitor among the plant kingdom, could mostly improve the quality of tea aroma by promoting flavor volatiles in tea leaves. Although a variety of volatile secondary metabolites that contribute to aroma quality have been identified, our understanding of the biosynthetic pathways of these compounds has remained largely incomplete. Therefore, information aboaut the transcriptome of tea leaves and, specifically, details of any changes in gene expression in response to MeJA, is required for a better understanding of the biological mechanisms of MeJA-mediated volatiles biosynthesis. Moreover, MeJA treatment could exaggerate the responses of secondary metabolites and some gene expression which offer a better chance to figure out the mechanism. The results of two-dimensional gas-chromatograph mass-spectrometry showed that the terpenoids content in MeJA-treated tea leaves increased, especially linalool, geraniol, and phenylethyl alcohol. More importantly, we carried out RNA-seq to identify the differentially expressed genes (DEGs) related to volatiles biosynthesis pathways induced by MeJA treatment (0 h, 12 h, 24 h and 48 h) in tea leaves. We identified 19245, 18614, 11890 DEGs respectively in the MeJA_12h, MeJA_24 h and MeJA_48 h samples. The α-Lenolenic acid degradation pathway was firstly responded resulting in activating the JA-pathway inner tea leaves, and the MEP/DOXP pathway significantly exaggerated. Notably, the expression level of jasmonate O-methyltransferase, which is associated with the central JA biosynthesis pathway, was increased by 7.52-fold in MeJA_24 h tea leaves. Moreover, the genes related to the terpenoid backbone biosynthesis pathway showed different expression patterns compared with the untreated leaves. The expression levels of 1-deoxy-D-xylulose-phosphate synthase (DXS), all-trans-nonaprenyl-diphosphate synthase, geranylgeranyl reductase, geranylgeranyl diphosphate synthase (type II), hydroxymethylglutaryl-CoA reductase and 4-hydroxy-3-methylbut-2-enyl diphosphate reductase increased by approximately 2-4-fold. The results of two-dimension gas-chromatography mass-spectrometry analysis suggested that exogenous application of MeJA could induce the levels of volatile components in tea leaves, especially the geraniol, linalool and its oxides. Moreover, the transcriptome analysis showed increased expression of genes in α-Lenolenic acid degradation pathway which produced massive jasmonic acid and quickly activated holistic JA-pathway inner tea leaves, also the terpenoid backbones biosynthesis pathway was significantly affected after MeJA treatment. In general, MeJA could greatly activate secondary metabolism pathways, especially volatiles. The results will deeply increase our understanding of the volatile metabolites biosynthesis pathways of tea leaves in response to MeJA.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 62 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 62 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 19%
Researcher 12 19%
Student > Bachelor 6 10%
Student > Postgraduate 5 8%
Student > Doctoral Student 5 8%
Other 15 24%
Unknown 7 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 34 55%
Environmental Science 4 6%
Biochemistry, Genetics and Molecular Biology 4 6%
Chemistry 2 3%
Chemical Engineering 1 2%
Other 2 3%
Unknown 15 24%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 October 2015.
All research outputs
of 16,638,522 outputs
Outputs from BMC Plant Biology
of 2,429 outputs
Outputs of similar age
of 252,886 outputs
Outputs of similar age from BMC Plant Biology
of 1 outputs
Altmetric has tracked 16,638,522 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,429 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 252,886 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them