↓ Skip to main content

Mosquito age and avian malaria infection

Overview of attention for article published in Malaria Journal, September 2015
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (69th percentile)
  • Good Attention Score compared to outputs of the same age and source (67th percentile)

Mentioned by

twitter
7 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
86 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mosquito age and avian malaria infection
Published in
Malaria Journal, September 2015
DOI 10.1186/s12936-015-0912-z
Pubmed ID
Authors

Romain Pigeault, Antoine Nicot, Sylvain Gandon, Ana Rivero

Abstract

The immune system of many insects wanes dramatically with age, leading to the general prediction that older insects should be more susceptible to infection than their younger counterparts. This prediction is however challenged by numerous studies showing that older insects are more resistant to a range of pathogens. The effect of age on susceptibility to infections is particularly relevant for mosquitoes given their role as vectors of malaria and other diseases. Despite this, the effect of mosquito age on Plasmodium susceptibility has been rarely explored, either experimentally or theoretically. Experiments were carried out using the avian malaria parasite Plasmodium relictum and its natural vector in the field, the mosquito Culex pipiens. Both innate immune responses (number and type of circulating haemocytes) and Plasmodium susceptibility (prevalence and burden) were quantified in seven- and 17-day old females. Whether immunity or Plasmodium susceptibility are modulated by the previous blood feeding history of the mosquito was also investigated. To ensure repeatability, two different experimental blocks were carried out several weeks apart. Haemocyte numbers decrease drastically as the mosquitoes age. Despite this, older mosquitoes are significantly more resistant to a Plasmodium infection than their younger counterparts. Crucially, however, the age effect is entirely reversed when old mosquitoes have taken one previous non-infected blood meal. The results agree with previous studies showing that older insects are often more resistant to infections than younger ones. These results suggest that structural and functional alterations in mosquito physiology with age may be more important than immunity in determining the probability of a Plasmodium infection in old mosquitoes. Possible explanations for why the effect is reversed in blood-fed mosquitoes are discussed. The reversal of the age effect in blood fed mosquitoes implies that age is unlikely to have a significant impact on mosquito susceptibility in the field.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 86 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
Unknown 85 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 23 27%
Researcher 14 16%
Student > Ph. D. Student 14 16%
Student > Bachelor 7 8%
Student > Doctoral Student 2 2%
Other 7 8%
Unknown 19 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 32 37%
Environmental Science 8 9%
Medicine and Dentistry 7 8%
Biochemistry, Genetics and Molecular Biology 5 6%
Immunology and Microbiology 4 5%
Other 9 10%
Unknown 21 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 May 2016.
All research outputs
#6,799,316
of 22,829,683 outputs
Outputs from Malaria Journal
#2,011
of 5,569 outputs
Outputs of similar age
#82,195
of 274,274 outputs
Outputs of similar age from Malaria Journal
#43
of 137 outputs
Altmetric has tracked 22,829,683 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 5,569 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one has gotten more attention than average, scoring higher than 63% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 274,274 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 137 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.