↓ Skip to main content

Quercetin reduces obesity-induced hepatosteatosis by enhancing mitochondrial oxidative metabolism via heme oxygenase-1

Overview of attention for article published in Nutrition & Metabolism, October 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
92 Dimensions

Readers on

mendeley
66 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Quercetin reduces obesity-induced hepatosteatosis by enhancing mitochondrial oxidative metabolism via heme oxygenase-1
Published in
Nutrition & Metabolism, October 2015
DOI 10.1186/s12986-015-0030-5
Pubmed ID
Authors

Chu-Sook Kim, Yoonhee Kwon, Suck-Young Choe, Sun-Myung Hong, Hoon Yoo, Tsuyoshi Goto, Teruo Kawada, Hye-Seon Choi, Yeonsoo Joe, Hun Taeg Chung, Rina Yu

Abstract

Obesity-induced hepatic lipid accumulation causes lipotoxicity, mitochondrial dysfunction, oxidative stress, and insulin resistance, and is implicated in non-alcoholic hepatic pathologies such as steatohepatitis and fibrosis. Heme oxygenase-1 (HO-1), an important antioxidant enzyme catalyzing the rate-limiting step in heme degradation, protects against oxidative stress, inflammation, and metabolic dysregulation. Here, we demonstrate that the phytochemical, quercetin, a natural polyphenol flavonoid, protects against hepatic steatosis in obese mice fed a high-fat diet, and that it does so by inducing HO-1 and stimulating increased hepatic mitochondrial oxidative metabolism. Male C57BL/6 mice were fed a regular diet (RD), a high-fat diet (HFD), and an HFD supplemented with quercetin for 9 weeks. Levels of mitochondrial biogenesis and oxidative metabolic transcripts/proteins were measured by real-time PCR and/or Western blotting. HO-1 transcripts/proteins were measured real-time PCR and/or Western blotting. Quercetin upregulated genes involved in mitochondrial biogenesis and oxidative metabolism in lipid-laden hepatocytes and the livers of HFD-fed obese mice, and this was accompanied by increased levels of the transcription factor, nuclear erythroid 2-related factor 2 (Nrf-2), and HO-1 protein. The HO-1 inducer hemin and the HO-1 byproduct carbon monoxide (CO) also enhanced hepatic oxidative metabolism in HFD-fed obese mice. Moreover, the metabolic changes and the lipid-lowering effects of quercetin were completely blocked by the HO-1 inhibitor ZnPP and by deficiency of Nrf-2. These findings suggest that quercetin stimulates hepatic mitochondrial oxidative metabolism by inducing HO-1 via the Nrf-2 pathway. Quercetin may be useful in protecting against obesity-induced hepatosteatosis.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 66 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 66 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 15%
Student > Master 8 12%
Student > Bachelor 7 11%
Student > Doctoral Student 6 9%
Professor 4 6%
Other 12 18%
Unknown 19 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 15 23%
Medicine and Dentistry 9 14%
Agricultural and Biological Sciences 6 9%
Nursing and Health Professions 4 6%
Pharmacology, Toxicology and Pharmaceutical Science 4 6%
Other 6 9%
Unknown 22 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 October 2015.
All research outputs
#18,428,159
of 22,829,683 outputs
Outputs from Nutrition & Metabolism
#775
of 949 outputs
Outputs of similar age
#199,992
of 277,991 outputs
Outputs of similar age from Nutrition & Metabolism
#11
of 13 outputs
Altmetric has tracked 22,829,683 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 949 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.5. This one is in the 10th percentile – i.e., 10% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 277,991 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one is in the 7th percentile – i.e., 7% of its contemporaries scored the same or lower than it.