↓ Skip to main content

Caffeine differentially alters cortical hemodynamic activity during working memory: a near infrared spectroscopy study

Overview of attention for article published in BMC Research Notes, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Caffeine differentially alters cortical hemodynamic activity during working memory: a near infrared spectroscopy study
Published in
BMC Research Notes, October 2015
DOI 10.1186/s13104-015-1491-3
Pubmed ID
Authors

Urs Heilbronner, Hermann Hinrichs, Hans-Jochen Heinze, Tino Zaehle

Abstract

Caffeine is a widely used stimulant with potentially beneficial effects on cognition as well as vasoconstrictive properties. In functional magnetic imaging research, caffeine has gained attention as a potential enhancer of the blood oxygenation level-dependent (BOLD) response. In order to clarify changes of oxy- and deoxyhemoglobin (HbO and HbR) induced by caffeine during a cognitive task, we investigated a working memory (WM) paradigm (visual 2-back) using near-infrared spectroscopy (NIRS). Behaviorally, caffeine had no effect on the WM performance but influenced reaction times in the 0-back condition. NIRS data demonstrate caffeine-dependent alterations of the course of the hemodynamic response. The intake of 200 mg caffeine caused a significant decrease of the HbO response between 20 and 40 s after the onset of a 2-back task in the bilateral inferior frontal cortex (IFC). In parallel, the HbR response of the left IFC was significantly increased due to caffeine intake. In line with previous results, we did not detect an effect of caffeine on most aspects of behavior. Effects of caffeine on brain vasculature were detected as general reduction of HbO. Neuronal effects of caffeine are reflected in an increased concentration of HbR in the left hemisphere when performing a verbal memory task and suggest influences on metabolism.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 41 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 20%
Researcher 6 15%
Student > Bachelor 4 10%
Professor > Associate Professor 4 10%
Student > Ph. D. Student 2 5%
Other 4 10%
Unknown 13 32%
Readers by discipline Count As %
Psychology 7 17%
Medicine and Dentistry 4 10%
Neuroscience 3 7%
Agricultural and Biological Sciences 2 5%
Engineering 2 5%
Other 6 15%
Unknown 17 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 October 2015.
All research outputs
#15,348,897
of 22,830,751 outputs
Outputs from BMC Research Notes
#2,314
of 4,263 outputs
Outputs of similar age
#160,897
of 274,926 outputs
Outputs of similar age from BMC Research Notes
#97
of 185 outputs
Altmetric has tracked 22,830,751 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,263 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 274,926 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 185 others from the same source and published within six weeks on either side of this one. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.