↓ Skip to main content

Genome-wide identification and functional analysis of lincRNAs acting as miRNA targets or decoys in maize

Overview of attention for article published in BMC Genomics, October 2015
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • Good Attention Score compared to outputs of the same age and source (65th percentile)

Mentioned by

twitter
8 X users

Citations

dimensions_citation
95 Dimensions

Readers on

mendeley
81 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide identification and functional analysis of lincRNAs acting as miRNA targets or decoys in maize
Published in
BMC Genomics, October 2015
DOI 10.1186/s12864-015-2024-0
Pubmed ID
Authors

Chunyan Fan, Zhiqiang Hao, Jiahong Yan, Guanglin Li

Abstract

Long intergenic noncoding RNAs (lincRNAs) are endogenous non-coding RNAs (ncRNAs) that are transcribed from 'intergenic' regions of the genome and may play critical roles in regulating gene expression through multiple RNA-mediated mechanisms. MicroRNAs (miRNAs) are single-stranded small ncRNAs of approximately 21-24 nucleotide (nt) that are involved in transcriptional and post-transcriptional gene regulation. While miRNAs functioning as mRNA repressors have been studied in detail, the influence of miRNAs on lincRNAs has seldom been investigated in plants. LincRNAs as miRNA targets or decoys were predicted via GSTAr.pl script with a set of rules, and lincRNAs as miRNA targets were validated by degradome data. Conservation analysis of lincRNAs as miRNA targets or decoys were conducted using BLASTN and MAFFT. The function of lincRNAs as miRNA targets were predicted via a lincRNA-mRNA co-expression network, and the function of lincRNAs as miRNA decoys were predicted according to the competing endogenous RNA (ceRNA) hypothesis. In this work, we developed a computational method and systematically predicted 466 lincRNAs as 165 miRNA targets and 86 lincRNAs as 58 miRNA decoys in maize (Zea mays L.). Furthermore, 34 lincRNAs predicted as 33 miRNA targets were validated based on degradome data. We found that lincRNAs acting as miRNA targets or decoys are a common phenomenon, which indicates that the regulated networks of miRNAs also involve lincRNAs. To elucidate the function of lincRNAs, we reconstructed a miRNA-regulated network involving 78 miRNAs, 117 lincRNAs and 8834 mRNAs. Based on the lincRNA-mRNA co-expression network and the competing endogenous RNA hypothesis, we predicted that 34 lincRNAs that function as miRNA targets and 86 lincRNAs that function as miRNA decoys participate in cellular and metabolic processes, and play role in catalytic activity and molecular binding functions. This work provides a comprehensive view of miRNA-regulated networks and indicates that lincRNAs can participate in a layer of regulatory interactions as miRNA targets or decoys in plants, which will enable in-depth functional analysis of lincRNAs.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 81 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 1 1%
Germany 1 1%
Brazil 1 1%
Unknown 78 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 25%
Researcher 16 20%
Student > Doctoral Student 7 9%
Student > Master 6 7%
Student > Postgraduate 5 6%
Other 12 15%
Unknown 15 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 29 36%
Biochemistry, Genetics and Molecular Biology 24 30%
Computer Science 3 4%
Neuroscience 2 2%
Pharmacology, Toxicology and Pharmaceutical Science 1 1%
Other 4 5%
Unknown 18 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 October 2015.
All research outputs
#6,962,756
of 22,830,751 outputs
Outputs from BMC Genomics
#3,219
of 10,655 outputs
Outputs of similar age
#85,882
of 279,238 outputs
Outputs of similar age from BMC Genomics
#117
of 373 outputs
Altmetric has tracked 22,830,751 research outputs across all sources so far. This one has received more attention than most of these and is in the 68th percentile.
So far Altmetric has tracked 10,655 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,238 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 373 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.