↓ Skip to main content

Comparative proteomic analysis of QTL CTS-12 derived from wild rice (Oryza rufipogon Griff.), in the regulation of cold acclimation and de-acclimation of rice (Oryza sativa L.) in response to severe…

Overview of attention for article published in BMC Plant Biology, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 tweeters
facebook
3 Facebook pages

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparative proteomic analysis of QTL CTS-12 derived from wild rice (Oryza rufipogon Griff.), in the regulation of cold acclimation and de-acclimation of rice (Oryza sativa L.) in response to severe chilling stress
Published in
BMC Plant Biology, August 2018
DOI 10.1186/s12870-018-1381-7
Pubmed ID
Authors

Weijian Cen, Jianbin Liu, Siyuan Lu, Peilong Jia, Kai Yu, Yue Han, Rongbai Li, Jijing Luo

Abstract

Rice (Oryza sativa L.) is a thermophilic crop vulnerable to chilling stress. However, common wild rice (Oryza rufipogon Griff.) in Guangxi (China) has the ability to tolerate chilling stress. To better understand the molecular mechanisms underlying chilling tolerance in wild rice, iTRAQ-based proteomic analysis was performed to examine CTS-12, a major chilling tolerance QTL derived from common wild rice, mediated chilling and recovery-induced differentially expressed proteins (DEPs) between the chilling-tolerant rice line DC90 and the chilling-sensitive 9311. Comparative analysis identified 206 and 155 DEPs in 9311 and DC90, respectively, in response to the whole period of chilling and recovery. These DEPs were clustered into 6 functional groups in 9311 and 4 in DC90. The majority were enriched in the 'structural constituent of ribosome', 'protein-chromophore linkage', and 'photosynthesis and light harvesting' categories. Short Time-series Expression Miner (STEM) analysis revealed distinct dynamic responses of both chloroplast photosynthetic and ribosomal proteins between 9311 and DC90. CTS-12 might mediate the dynamic response of chloroplast photosynthetic and ribosomal proteins in DC90 under chilling (cold acclimation) and recovery (de-acclimation) and thereby enhancing the chilling stress tolerance of this rice line. The identified DEPs and the involvement of CTS-12 in mediating the dynamic response of DC90 at the proteomic level illuminate and deepen the understanding of the mechanisms that underlie chilling stress tolerance in wild rice.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 28%
Student > Ph. D. Student 4 16%
Researcher 2 8%
Student > Bachelor 1 4%
Student > Doctoral Student 1 4%
Other 2 8%
Unknown 8 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 40%
Biochemistry, Genetics and Molecular Biology 3 12%
Immunology and Microbiology 2 8%
Business, Management and Accounting 1 4%
Engineering 1 4%
Other 0 0%
Unknown 8 32%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 November 2018.
All research outputs
#7,642,286
of 13,845,249 outputs
Outputs from BMC Plant Biology
#655
of 1,926 outputs
Outputs of similar age
#130,196
of 272,445 outputs
Outputs of similar age from BMC Plant Biology
#1
of 1 outputs
Altmetric has tracked 13,845,249 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,926 research outputs from this source. They receive a mean Attention Score of 3.1. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 272,445 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them