↓ Skip to main content

Neuroprotection and immunomodulation following intraspinal axotomy of motoneurons by treatment with adult mesenchymal stem cells

Overview of attention for article published in Journal of Neuroinflammation, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
58 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Neuroprotection and immunomodulation following intraspinal axotomy of motoneurons by treatment with adult mesenchymal stem cells
Published in
Journal of Neuroinflammation, August 2018
DOI 10.1186/s12974-018-1268-4
Pubmed ID
Authors

A. B. Spejo, G. B. Chiarotto, A. D. F. Ferreira, D. A. Gomes, R. S. Ferreira, B. Barraviera, A. L. R. Oliveira

Abstract

Treatment of spinal cord injury is dependent on neuronal survival, appropriate synaptic circuit preservation, and inflammatory environment management. In this sense, mesenchymal stem cell (MSC) therapy is a promising tool that can reduce glial reaction and provide trophic factors to lesioned neurons. Lewis adult female rats were submitted to a unilateral ventral funiculus cut at the spinal levels L4, L5, and L6. The animals were divided into the following groups: IA (intramedullary axotomy), IA + DMEM (Dulbecco's modified Eagle's medium), IA + FS (fibrin sealant), IA + MSC (106 cells), and IA + FS + MSC (106 cells). Seven days after injury, qPCR (n = 5) was performed to assess gene expression of VEGF, BDNF, iNOS2, arginase-1, TNF-α, IL-1β, IL-6, IL-10, IL-4, IL-13, and TGF-β. The cellular infiltrate at the lesion site was analyzed by hematoxylin-eosin (HE) staining and immunohistochemistry (IH) for Iba1 (microglia and macrophage marker) and arginase-1. Fourteen days after injury, spinal alpha motor neurons (MNs), evidenced by Nissl staining (n = 5), were counted. For the analysis of astrogliosis in spinal lamina IX and synaptic detachment around lesioned motor neurons (GAP-43-positive cells), anti-GFAP and anti-synaptophysin immunohistochemistry (n = 5) was performed, respectively. Twenty-eight days after IA, the gait of the animals was evaluated by the walking track test (CatWalk; n = 7). The site of injury displayed strong monocyte infiltration, containing arginase-1-expressing macrophages. The FS-treated group showed upregulation of iNOS2, arginase-1, proinflammatory cytokine (TNF-α and IL-1β), and antiinflammatory cytokine (IL-10, IL-4, and IL-13) expression. Thus, FS enhanced early macrophage recruitment and proinflammatory cytokine expression, which accelerated inflammation. Rats treated with MSCs displayed high BDNF-positive immunolabeling, suggesting local delivery of this neurotrophin to lesioned motoneurons. This BDNF expression may have contributed to the increased neuronal survival and synapse preservation and decreased astrogliosis observed 14 days after injury. At 28 days after lesion, gait recovery was significantly improved in MSC-treated animals compared to that in the other groups. Overall, the present data demonstrate that MSC therapy is neuroprotective and, when associated with a FS, shifts the immune response to a proinflammatory profile.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 58 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 12 21%
Student > Ph. D. Student 7 12%
Researcher 7 12%
Student > Master 5 9%
Student > Doctoral Student 4 7%
Other 10 17%
Unknown 13 22%
Readers by discipline Count As %
Neuroscience 14 24%
Medicine and Dentistry 10 17%
Biochemistry, Genetics and Molecular Biology 5 9%
Agricultural and Biological Sciences 3 5%
Nursing and Health Professions 2 3%
Other 7 12%
Unknown 17 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 August 2018.
All research outputs
#15,542,971
of 23,099,576 outputs
Outputs from Journal of Neuroinflammation
#1,771
of 2,663 outputs
Outputs of similar age
#210,082
of 331,095 outputs
Outputs of similar age from Journal of Neuroinflammation
#44
of 71 outputs
Altmetric has tracked 23,099,576 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,663 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,095 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 71 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.