↓ Skip to main content

Triptolide inhibits Epstein-Barr nuclear antigen 1 expression by increasing sensitivity of mitochondria apoptosis of nasopharyngeal carcinoma cells

Overview of attention for article published in Journal of Experimental & Clinical Cancer Research, August 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Triptolide inhibits Epstein-Barr nuclear antigen 1 expression by increasing sensitivity of mitochondria apoptosis of nasopharyngeal carcinoma cells
Published in
Journal of Experimental & Clinical Cancer Research, August 2018
DOI 10.1186/s13046-018-0865-5
Pubmed ID
Authors

Heng Zhou, Yu Liu, Chao Wang, Limei Liu, Huan Wang, Yaqian Zhang, Cong Long, Xiaoping Sun

Abstract

Epstein-Barr virus (EBV) is widely found in nasopharyngeal carcinoma (NPC) tissue and associated with poor prognosis of patients. EBV nuclear antigen 1 (EBNA1) is expressed in all NPC tumors and plays multiple biological roles in both virus and host cells. Triptolide is a natural product extracted from Tripterygium and shows anti-cancer activities. The goal of this work was to illustrate the anti-cancer effect of triptolide and elucidate a novel anti-apoptotic mechanism of EBNA1 in NPC cells encountered with triptolide. In the present study, a CCK-8 assay was used to analyze the proliferation of NPC cells treated with triptolide in a dose- and time-dependent ways. Effects of triptolide on NPC cell cycle and apoptosis were investigated by flow cytometric analysis. EBNA1 expression in mRNA and protein levels was determined by quantitative real-time PCR and Western blot, respectively. Our results showed that triptolide effectively inhibited proliferation of NPC cells. Triptolide arrested NPC cell cycles in S phase and induced apoptosis through a caspase-9-dependent apoptosis pathway. Low-dose of triptolide reduced the half-life of EBNA1 and significantly decreased EBNA1 expression by promoting the process of proteasome-ubiquitin pathway. Over-expression of EBNA1, which was independent from EBV genome, effectively attenuated the apoptosis induced by triptolide. In addition, triptolide significantly inhibited proliferations of tumors induced by EBV-positive cells in vivo. Furthermore, EBNA1 were expressed in all NPC biopsies of Chinese patients. In summary, our study provides the evidence that triptolide induces EBNA1 degradation and stimulates NPC apoptosis through mitochondria apoptotic pathway. In addition, EBNA1 assists NPC cells to resist triptolide-induced apoptosis through inhibiting caspase-9-dependent apoptotic pathway.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 8 35%
Student > Master 3 13%
Other 1 4%
Student > Doctoral Student 1 4%
Lecturer 1 4%
Other 2 9%
Unknown 7 30%
Readers by discipline Count As %
Medicine and Dentistry 7 30%
Nursing and Health Professions 3 13%
Agricultural and Biological Sciences 2 9%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Biochemistry, Genetics and Molecular Biology 1 4%
Other 1 4%
Unknown 8 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 August 2018.
All research outputs
#22,767,715
of 25,385,509 outputs
Outputs from Journal of Experimental & Clinical Cancer Research
#1,970
of 2,382 outputs
Outputs of similar age
#298,056
of 340,605 outputs
Outputs of similar age from Journal of Experimental & Clinical Cancer Research
#64
of 80 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,382 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,605 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 80 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.