↓ Skip to main content

Impact of transposable elements on genome structure and evolution in bread wheat

Overview of attention for article published in Genome Biology, August 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • Good Attention Score compared to outputs of the same age and source (67th percentile)

Mentioned by

news
1 news outlet
blogs
1 blog
twitter
27 X users
wikipedia
1 Wikipedia page

Citations

dimensions_citation
217 Dimensions

Readers on

mendeley
284 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Impact of transposable elements on genome structure and evolution in bread wheat
Published in
Genome Biology, August 2018
DOI 10.1186/s13059-018-1479-0
Pubmed ID
Authors

Thomas Wicker, Heidrun Gundlach, Manuel Spannagl, Cristobal Uauy, Philippa Borrill, Ricardo H. Ramírez-González, Romain De Oliveira, International Wheat Genome Sequencing Consortium, Klaus F. X. Mayer, Etienne Paux, Frédéric Choulet

Abstract

Transposable elements (TEs) are major components of large plant genomes and main drivers of genome evolution. The most recent assembly of hexaploid bread wheat recovered the highly repetitive TE space in an almost complete chromosomal context and enabled a detailed view into the dynamics of TEs in the A, B, and D subgenomes. The overall TE content is very similar between the A, B, and D subgenomes, although we find no evidence for bursts of TE amplification after the polyploidization events. Despite the near-complete turnover of TEs since the subgenome lineages diverged from a common ancestor, 76% of TE families are still present in similar proportions in each subgenome. Moreover, spacing between syntenic genes is also conserved, even though syntenic TEs have been replaced by new insertions over time, suggesting that distances between genes, but not sequences, are under evolutionary constraints. The TE composition of the immediate gene vicinity differs from the core intergenic regions. We find the same TE families to be enriched or depleted near genes in all three subgenomes. Evaluations at the subfamily level of timed long terminal repeat-retrotransposon insertions highlight the independent evolution of the diploid A, B, and D lineages before polyploidization and cases of concerted proliferation in the AB tetraploid. Even though the intergenic space is changed by the TE turnover, an unexpected preservation is observed between the A, B, and D subgenomes for features like TE family proportions, gene spacing, and TE enrichment near genes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 27 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 284 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 284 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 57 20%
Researcher 54 19%
Student > Master 26 9%
Student > Bachelor 22 8%
Student > Doctoral Student 15 5%
Other 38 13%
Unknown 72 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 123 43%
Biochemistry, Genetics and Molecular Biology 63 22%
Computer Science 7 2%
Unspecified 2 <1%
Social Sciences 2 <1%
Other 10 4%
Unknown 77 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 32. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 April 2021.
All research outputs
#1,253,293
of 25,385,509 outputs
Outputs from Genome Biology
#947
of 4,468 outputs
Outputs of similar age
#26,156
of 341,403 outputs
Outputs of similar age from Genome Biology
#22
of 67 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,468 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 27.6. This one has done well, scoring higher than 78% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,403 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 67 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.