↓ Skip to main content

Identification of sensory hair-cell transcripts by thiouracil-tagging in zebrafish

Overview of attention for article published in BMC Genomics, October 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

news
1 news outlet
twitter
2 X users

Citations

dimensions_citation
50 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of sensory hair-cell transcripts by thiouracil-tagging in zebrafish
Published in
BMC Genomics, October 2015
DOI 10.1186/s12864-015-2072-5
Pubmed ID
Authors

Timothy Erickson, Teresa Nicolson

Abstract

Sensory hair cells are exquisitely sensitive to mechanical stimuli and as such, are prone to damage and apoptosis during dissections or in vitro manipulations. Thiouracil (TU)-tagging is a noninvasive method to label cell type-specific transcripts in an intact organism, thereby meeting the challenge of how to analyze gene expression in hair cells without the need to sort cells. We adapted TU-tagging to zebrafish to identify novel transcripts expressed in the sensory hair cells of the developing acoustico-lateralis organs. We created a transgenic line of zebrafish expressing the T.gondii uracil phospho-ribosyltransferase (UPRT) enzyme specifically in the hair cells of the inner ear and lateral line organ. RNA was labeled by exposing 3 days post-fertilization (dpf) UPRT transgenic larvae to 2.5 mM 4-thiouracil (4TU) for 15 hours. Following total RNA isolation, poly(A) mRNA enrichment, and purification of TU-tagged RNA, deep sequencing was performed on the input and TU-tagged RNA samples.  RESULTS: Analysis of the RNA sequencing data revealed the expression of 28 transcripts that were significantly enriched (adjusted p-value < 0.05) in the UPRT TU-tagged RNA relative to the input sample. Of the 25 TU-tagged transcripts with mammalian homologs, the expression of 18 had not been previously demonstrated in zebrafish hair cells. The hair cell-restricted expression for 17 of these transcripts was confirmed by whole mount mRNA in situ hybridization in 3 dpf larvae. The hair cell-restricted pattern of expression of these genes offers insight into the biology of this receptor cell type and may serve as useful markers to study the development and function of sensory hair cells. In addition, our study demonstrates the utility of TU-tagging to study nascent transcripts in specific cell types that are relatively rare in the context of the whole zebrafish larvae.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 64 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 30%
Researcher 12 19%
Student > Bachelor 9 14%
Professor > Associate Professor 5 8%
Student > Master 5 8%
Other 7 11%
Unknown 7 11%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 18 28%
Agricultural and Biological Sciences 14 22%
Neuroscience 9 14%
Medicine and Dentistry 4 6%
Chemistry 3 5%
Other 7 11%
Unknown 9 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 June 2020.
All research outputs
#3,069,478
of 22,830,751 outputs
Outputs from BMC Genomics
#1,131
of 10,655 outputs
Outputs of similar age
#45,195
of 283,600 outputs
Outputs of similar age from BMC Genomics
#31
of 354 outputs
Altmetric has tracked 22,830,751 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,655 research outputs from this source. They receive a mean Attention Score of 4.7. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 283,600 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 354 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.