↓ Skip to main content

AlloPred: prediction of allosteric pockets on proteins using normal mode perturbation analysis

Overview of attention for article published in BMC Bioinformatics, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
85 Dimensions

Readers on

mendeley
135 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
AlloPred: prediction of allosteric pockets on proteins using normal mode perturbation analysis
Published in
BMC Bioinformatics, October 2015
DOI 10.1186/s12859-015-0771-1
Pubmed ID
Authors

Joe G Greener, Michael JE Sternberg

Abstract

Despite being hugely important in biological processes, allostery is poorly understood and no universal mechanism has been discovered. Allosteric drugs are a largely unexplored prospect with many potential advantages over orthosteric drugs. Computational methods to predict allosteric sites on proteins are needed to aid the discovery of allosteric drugs, as well as to advance our fundamental understanding of allostery. AlloPred, a novel method to predict allosteric pockets on proteins, was developed. AlloPred uses perturbation of normal modes alongside pocket descriptors in a machine learning approach that ranks the pockets on a protein. AlloPred ranked an allosteric pocket top for 23 out of 40 known allosteric proteins, showing comparable and complementary performance to two existing methods. In 28 of 40 cases an allosteric pocket was ranked first or second. The AlloPred web server, freely available at http://www.sbg.bio.ic.ac.uk/allopred/home , allows visualisation and analysis of predictions. The source code and dataset information are also available from this site. Perturbation of normal modes can enhance our ability to predict allosteric sites on proteins. Computational methods such as AlloPred assist drug discovery efforts by suggesting sites on proteins for further experimental study.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 135 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
United States 1 <1%
Switzerland 1 <1%
Unknown 132 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 41 30%
Student > Master 21 16%
Researcher 19 14%
Student > Bachelor 12 9%
Professor 6 4%
Other 14 10%
Unknown 22 16%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 32 24%
Agricultural and Biological Sciences 24 18%
Chemistry 17 13%
Computer Science 15 11%
Physics and Astronomy 5 4%
Other 14 10%
Unknown 28 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 October 2015.
All research outputs
#14,827,133
of 22,830,751 outputs
Outputs from BMC Bioinformatics
#5,044
of 7,287 outputs
Outputs of similar age
#156,880
of 283,600 outputs
Outputs of similar age from BMC Bioinformatics
#92
of 141 outputs
Altmetric has tracked 22,830,751 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,287 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 283,600 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 141 others from the same source and published within six weeks on either side of this one. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.