↓ Skip to main content

Platelet studies in autism spectrum disorder patients and first-degree relatives

Overview of attention for article published in Molecular Autism, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
72 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Platelet studies in autism spectrum disorder patients and first-degree relatives
Published in
Molecular Autism, October 2015
DOI 10.1186/s13229-015-0051-y
Pubmed ID
Authors

Nora Bijl, Chantal Thys, Christine Wittevrongel, Wouter De la Marche, Koenraad Devriendt, Hilde Peeters, Chris Van Geet, Kathleen Freson

Abstract

Platelets have been proven to be a useful cellular model to study some neuropathologies, due to the overlapping biological features between neurons and platelets as granule secreting cells. Altered platelet dense granule morphology was previously reported in three autism spectrum disorder (ASD) patients with chromosomal translocations that disrupted ASD candidate genes NBEA, SCAMP5, and AMYSIN, but a systematic analysis of platelet function in ASD is lacking in contrast to numerous reports of elevated serotonin levels in platelets and blood as potential biomarker for ASD. We explored platelet count, size, epinephrine-induced activation, and dense granule ATP secretion in a cohort of 159 ASD patients, their 289 first-degree relatives (103 unaffected siblings, 99 mothers, and 87 fathers), 45 adult controls, and 65 pediatric controls. For each of the responses separately, a linear mixed model with gender as a covariate was used to compare the level between groups. We next investigated the correlation between platelet function outcomes and severity of impairments in social behavior (social responsiveness score (SRS)). The average platelet count was increased in ASD patients and siblings vs. controls (ASD 320.3 × 10(9)/L, p = 0.003; siblings 332.0 × 10(9)/L, p < 0.001; controls 283.0 × 10(9)/L). The maximal platelet secretion-dependent aggregation response to epinephrine was not significantly lower for ASD patients. However, secondary wave responses following stimulation with epinephrine were more frequently delayed or absent compared to controls (ASD 52 %, siblings 45 %, parents 53 %, controls 22 %, p = 0.002). In addition, stimulated release of ATP from dense granules was reduced in ASD patients, siblings, and parents vs. controls following activation of platelets with either collagen (ASD 1.54 μM, p = 0.001; siblings 1.51 μM, p < 0.001; parents 1.67 μM, p = 0.021; controls 2.03 μM) or ADP (ASD 0.96 μM, p = 0.003; siblings 1.00 μM, p = 0.012; parents 1.17 μM, p = 0.21; controls 1.40 μM). Plasma serotonin levels were increased for ASD patients (n = 20, p = 0.005) and siblings (n = 20, p = 0.0001) vs. controls (n = 16). No significant correlations were found in the different groups between SRS scores and count, size, epinephrine aggregation, or ATP release. We report increased platelet counts, decreased platelet ATP dense granule secretion, and increased serotonin plasma levels not only in ASD patients but also in their first-degree relatives. This suggests that potential genetic factors associated with platelet counts and granule secretion can be associated with, but are not fully penetrant for ASD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 72 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 72 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 14%
Student > Ph. D. Student 9 13%
Researcher 8 11%
Student > Doctoral Student 6 8%
Student > Bachelor 5 7%
Other 17 24%
Unknown 17 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 13%
Medicine and Dentistry 9 13%
Agricultural and Biological Sciences 8 11%
Neuroscience 6 8%
Arts and Humanities 4 6%
Other 14 19%
Unknown 22 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 September 2022.
All research outputs
#15,052,219
of 25,199,243 outputs
Outputs from Molecular Autism
#589
of 716 outputs
Outputs of similar age
#142,108
of 290,311 outputs
Outputs of similar age from Molecular Autism
#12
of 13 outputs
Altmetric has tracked 25,199,243 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 716 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 28.1. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 290,311 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.