↓ Skip to main content

Do fragments and glycosylated isoforms of alpha-1-antitrypsin in CSF mirror spinal pathophysiological mechanisms in chronic peripheral neuropathic pain? An exploratory, discovery phase study

Overview of attention for article published in BMC Neurology, August 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Do fragments and glycosylated isoforms of alpha-1-antitrypsin in CSF mirror spinal pathophysiological mechanisms in chronic peripheral neuropathic pain? An exploratory, discovery phase study
Published in
BMC Neurology, August 2018
DOI 10.1186/s12883-018-1116-2
Pubmed ID
Authors

Emmanuel Bäckryd, Sofia Edström, Björn Gerdle, Bijar Ghafouri

Abstract

Post-translational modifications (PTMs) generate a tremendous protein diversity from the ~ 20,000 protein-coding genes of the human genome. In chronic pain conditions, exposure to pathological processes in the central nervous system could lead to disease-specific PTMs detectable in the cerebrospinal fluid (CSF). In a previous hypothesis-generating study, we reported that seven out of 260 CSF proteins highly discriminated between neuropathic pain patients and healthy controls: one isoform of angiotensinogen (AG), two isoforms of alpha-1-antitrypsin (AT), three isoforms of haptoglobin (HG), and one isoform of pigment epithelium-derived factor (PEDF). The present study had three aims: (1) To examine the multivariate inter-correlations between all identified isoforms of these seven proteins; (2) Based on the results of the first aim, to characterize PTMs in a subset of interesting proteins; (3) To regress clinical pain data using the 260 proteins as predictors, thereby testing the hypothesis that the above-mentioned seven discriminating proteins and/or the characterized isoforms/fragments of aim (2) would be among the proteins having the highest predictive power for clinical pain data. CSF samples from 11 neuropathic pain patients and 11 healthy controls were used for biochemical analysis of protein isoforms. PTM characterization was performed using enzymatic reaction assay and mass spectrometry. Multivariate data analysis (principal component analysis and orthogonal partial least square regression) was applied on the quantified protein isoforms. We identified 5 isoforms of AG, 18 isoforms of AT, 5 isoforms of HG, and 5 isoforms of PEDF. Fragments and glycosylated isoforms of AT were studied in depth. When regressing the pain intensity data of patients, three isoforms of AT, two isoforms of PEDF, and one isoform of angiotensinogen "reappeared" as major results, i.e., they were major findings both when comparing patients with healthy controls and when regressing pain intensity in patients. Altered levels of fragments and/or glycosylated isoforms of alpha-1-antitrypsin might mirror pathophysiological processes in the spinal cord of neuropathic pain patients. In particular, we suggest that a putative disease-specific combination of the levels of two different N-truncated fragments of alpha-1-antitrypsin might be interesting for future CSF and/or plasma biomarker investigations in chronic neuropathic pain.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 22%
Professor > Associate Professor 3 17%
Unspecified 2 11%
Student > Ph. D. Student 2 11%
Student > Bachelor 1 6%
Other 1 6%
Unknown 5 28%
Readers by discipline Count As %
Unspecified 2 11%
Biochemistry, Genetics and Molecular Biology 2 11%
Medicine and Dentistry 2 11%
Agricultural and Biological Sciences 2 11%
Nursing and Health Professions 1 6%
Other 2 11%
Unknown 7 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 August 2018.
All research outputs
#20,530,891
of 23,100,534 outputs
Outputs from BMC Neurology
#2,166
of 2,469 outputs
Outputs of similar age
#263,703
of 301,794 outputs
Outputs of similar age from BMC Neurology
#30
of 42 outputs
Altmetric has tracked 23,100,534 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,469 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 301,794 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 42 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.