↓ Skip to main content

Dichlorvos exposure results in large scale disruption of energy metabolism in the liver of the zebrafish, Danio rerio

Overview of attention for article published in BMC Genomics, October 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
62 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Dichlorvos exposure results in large scale disruption of energy metabolism in the liver of the zebrafish, Danio rerio
Published in
BMC Genomics, October 2015
DOI 10.1186/s12864-015-1941-2
Pubmed ID
Authors

Tri M. Bui-Nguyen, Christine E. Baer, John A. Lewis, Dongren Yang, Pamela J. Lein, David A. Jackson

Abstract

Exposure to dichlorvos (DDVP), an organophosphorus pesticide, is known to result in neurotoxicity as well as other metabolic perturbations. However, the molecular causes of DDVP toxicity are poorly understood, especially in cells other than neurons and muscle cells. To obtain a better understanding of the process of non-neuronal DDVP toxicity, we exposed zebrafish to different concentrations of DDVP, and investigated the resulting changes in liver histology and gene transcription. Functional enrichment analysis of genes affected by DDVP exposure identified a number of processes involved in energy utilization and stress response in the liver. The abundance of transcripts for proteins involved in glucose metabolism was profoundly affected, suggesting that carbon flux might be diverted toward the pentose phosphate pathway to compensate for an elevated demand for energy and reducing equivalents for detoxification. Strikingly, many transcripts for molecules involved in β-oxidation and fatty acid synthesis were down-regulated. We found increases in message levels for molecules involved in reactive oxygen species responses as well as ubiquitination, proteasomal degradation, and autophagy. To ensure that the effects of DDVP on energy metabolism were not simply a consequence of poor feeding because of neuromuscular impairment, we fasted fish for 29 or 50 h and analyzed liver gene expression in them. The patterns of gene expression for energy metabolism in fasted and DDVP-exposed fish were markedly different. We observed coordinated changes in the expression of a large number of genes involved in energy metabolism and responses to oxidative stress. These results argue that an appreciable part of the effect of DDVP is on energy metabolism and is regulated at the message level. Although we observed some evidence of neuromuscular impairment in exposed fish that may have resulted in reduced feeding, the alterations in gene expression in exposed fish cannot readily be explained by nutrient deprivation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 62 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 62 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 8 13%
Student > Ph. D. Student 7 11%
Other 6 10%
Researcher 6 10%
Student > Bachelor 5 8%
Other 13 21%
Unknown 17 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 21%
Biochemistry, Genetics and Molecular Biology 6 10%
Environmental Science 5 8%
Veterinary Science and Veterinary Medicine 3 5%
Medicine and Dentistry 3 5%
Other 8 13%
Unknown 24 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 October 2015.
All research outputs
#20,295,099
of 22,831,537 outputs
Outputs from BMC Genomics
#9,281
of 10,655 outputs
Outputs of similar age
#237,999
of 283,725 outputs
Outputs of similar age from BMC Genomics
#333
of 354 outputs
Altmetric has tracked 22,831,537 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,655 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 283,725 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 354 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.