↓ Skip to main content

Bioflocculant production from untreated corn stover using Cellulosimicrobium cellulans L804 isolate and its application to harvesting microalgae

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, October 2015
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (69th percentile)
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
1 X user
wikipedia
1 Wikipedia page

Readers on

mendeley
77 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Bioflocculant production from untreated corn stover using Cellulosimicrobium cellulans L804 isolate and its application to harvesting microalgae
Published in
Biotechnology for Biofuels and Bioproducts, October 2015
DOI 10.1186/s13068-015-0354-4
Pubmed ID
Authors

Weijie Liu, Chenchu Zhao, Jihong Jiang, Qian Lu, Yan Hao, Liang Wang, Cong Liu

Abstract

Microalgae are widely studied for biofuel production. Nevertheless, harvesting step of biomass is still a critical challenge. Bioflocculants have been applied in numerous applications including the low-cost harvest of microalgae. A major bottleneck for commercial application of bioflocculant is its high production cost. Lignocellulosic substrates are abundantly available. Hence, the hydrolyzates of rice stover and corn stover have been used as carbon source to produce the bioflocculant in previous studies. However, the hydrolyzates of biomass required the neutralization of pH before the downstream fermentation processes, and the toxic by-products produced during hydrolysis process inhibited the microbial activities in the subsequent fermentation processes and contaminated the bioflocculant product. Therefore, strains that can secrete plant cell-wall-degrading enzymes and simultaneously produce bioflocculants through directly degrading the lignocellulosic biomasses are of academic and practical interests. A lignocellulose-degrading strain Cellulosimicrobium cellulans L804 was isolated in this study, which can produce the bioflocculant MBF-L804 using untreated biomasses, such as corn stover, corn cob, potato residues, and peanut shell. The effects of culture conditions including initial pH, carbon source, and nitrogen source on MBF-L804 production were analyzed. The results showed that over 80 % flocculating activity was achieved when the corn stover, corn cob, potato residues, and peanut shell were used as carbon sources and 4.75 g/L of MBF-L804 was achieved under the optimized condition: 20 g/L dry corn stover as carbon source, 3 g/L yeast extract as nitrogen source, pH 8.2. The bioflocculant MBF-L804 contained 68.6 % polysaccharides and 28.0 % proteins. The Gel permeation chromatography analysis indicated that the approximate molecular weight (MW) of MBF-L804 was 229 kDa. The feasibility of harvesting microalgae Chlamydomonas reinhardtii and Chlorella minutissima using MBF-L804 was evaluated. The highest flocculating efficiencies for C. reinhardtii and C. minutissima were 99.04 and 93.83 %, respectively. This study shows for the first time that C. cellulans L804 can directly convert corn stover, corn cob, potato residues and peanut shell into the bioflocculants, which can be used to effectively harvest microalgae.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 77 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 77 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 22 29%
Student > Bachelor 9 12%
Researcher 7 9%
Student > Postgraduate 5 6%
Student > Master 5 6%
Other 5 6%
Unknown 24 31%
Readers by discipline Count As %
Environmental Science 14 18%
Agricultural and Biological Sciences 12 16%
Biochemistry, Genetics and Molecular Biology 6 8%
Chemical Engineering 6 8%
Engineering 6 8%
Other 5 6%
Unknown 28 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 November 2016.
All research outputs
#7,355,930
of 25,373,627 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#482
of 1,578 outputs
Outputs of similar age
#85,294
of 294,420 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#13
of 48 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one has gotten more attention than average, scoring higher than 66% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 294,420 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 48 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.