↓ Skip to main content

Deciphering the oviductal extracellular vesicles content across the estrous cycle: implications for the gametes-oviduct interactions and the environment of the potential embryo

Overview of attention for article published in BMC Genomics, August 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • Good Attention Score compared to outputs of the same age and source (77th percentile)

Mentioned by

twitter
9 X users

Citations

dimensions_citation
103 Dimensions

Readers on

mendeley
141 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Deciphering the oviductal extracellular vesicles content across the estrous cycle: implications for the gametes-oviduct interactions and the environment of the potential embryo
Published in
BMC Genomics, August 2018
DOI 10.1186/s12864-018-4982-5
Pubmed ID
Authors

C. Almiñana, G. Tsikis, V. Labas, R. Uzbekov, J. C. da Silveira, S. Bauersachs, P. Mermillod

Abstract

The success of early reproductive events depends on an appropriate communication between gametes/embryos and the oviduct. Extracellular vesicles (EVs) contained in oviductal secretions have been suggested as new players in mediating this crucial cross-talk by transferring their cargo (proteins, mRNA and small ncRNA) from cell to cell. However, little is known about the oviductal EVs (oEVS) composition and their implications in the reproductive success. The aim of the study was to determine the oEVs content at protein, mRNA and small RNA level and to examine whether the oEVs content is under the hormonal influence of the estrous cycle. We identified the presence of oEVs, exosomes and microvesicles, in the bovine oviductal fluid at different stages of the estrous cycle (postovulatory-stage, early luteal phase, late luteal phase and pre-ovulatory stage) and demonstrated that their composition is under hormonal regulation. RNA-sequencing identified 903 differentially expressed transcripts (FDR < 0.001) in oEVs across the estrous cycle. Moreover, small RNA-Seq identified the presence of different types of ncRNAs (miRNAs, rRNA fragments, tRNA fragments, snRNA, snoRNA, and other ncRNAs), which were partially also under hormonal influence. Major differences were found between post-ovulatory and the rest of the stages analyzed for mRNAs. Interesting miRNAs identified in oEVs and showing differential abundance among stages, miR-34c and miR-449a, have been associated with defective cilia in the oviduct and infertility. Furthermore, functional annotation of the differentially abundant mRNAs identified functions related to exosome/vesicles, cilia expression, embryo development and many transcripts encoding ribosomal proteins. Moreover, the analysis of oEVs protein content also revealed changes across the estrous cycle. Mass spectrometry identified 336 clusters of proteins in oEVs, of which 170 were differentially abundant across the estrous cycle (p-value< 0.05, ratio < 0.5 or ratio > 2). Our data revealed proteins related to early embryo development and gamete-oviduct interactions as well as numerous ribosomal proteins. Our study provides with the first molecular signature of oEVs across the bovine estrous cycle, revealing marked differences between post- and pre-ovulatory stages. Our findings contribute to a better understanding of the potential role of oEVs as modulators of gamete/embryo-maternal interactions and their implications for the reproductive success.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 141 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 141 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 24 17%
Student > Ph. D. Student 17 12%
Student > Bachelor 17 12%
Student > Doctoral Student 13 9%
Student > Master 11 8%
Other 18 13%
Unknown 41 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 30 21%
Biochemistry, Genetics and Molecular Biology 29 21%
Veterinary Science and Veterinary Medicine 19 13%
Medicine and Dentistry 6 4%
Engineering 3 2%
Other 6 4%
Unknown 48 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 January 2019.
All research outputs
#4,579,616
of 23,100,534 outputs
Outputs from BMC Genomics
#1,885
of 10,709 outputs
Outputs of similar age
#88,682
of 334,082 outputs
Outputs of similar age from BMC Genomics
#42
of 186 outputs
Altmetric has tracked 23,100,534 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,709 research outputs from this source. They receive a mean Attention Score of 4.7. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,082 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 186 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 77% of its contemporaries.