↓ Skip to main content

The epigenetic processes of meiosis in male mice are broadly affected by the widely used herbicide atrazine

Overview of attention for article published in BMC Genomics, October 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (55th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
52 Dimensions

Readers on

mendeley
69 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The epigenetic processes of meiosis in male mice are broadly affected by the widely used herbicide atrazine
Published in
BMC Genomics, October 2015
DOI 10.1186/s12864-015-2095-y
Pubmed ID
Authors

Aurore Gely-Pernot, Chunxiang Hao, Emmanuelle Becker, Igor Stuparevic, Christine Kervarrec, Frédéric Chalmel, Michael Primig, Bernard Jégou, Fatima Smagulova

Abstract

Environmental factors such as pesticides can cause phenotypic changes in various organisms, including mammals. We studied the effects of the widely used herbicide atrazine (ATZ) on meiosis, a key step of gametogenesis, in male mice. Gene expression pattern was analysed by Gene-Chip array. Genome-wide mapping of H3K4me3 marks distribution was done by ChIP-sequencing of testis tissue using Illumina technologies. RT-qPCR was used to validate differentially expressed genes or differential peaks. We demonstrate that exposure to ATZ reduces testosterone levels and the number of spermatozoa in the epididymis and delays meiosis. Using Gene-Chip and ChIP-Seq analysis of H3K4me3 marks, we found that a broad range of cellular functions, including GTPase activity, mitochondrial function and steroid-hormone metabolism, are affected by ATZ. Furthermore, treated mice display enriched histone H3K4me3 marks in regions of strong recombination (double-strand break sites), within very large genes and reduced marks in the pseudoautosomal region of X chromosome. Our data demonstrate that atrazine exposure interferes with normal meiosis, which affects spermatozoa production.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 69 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Unknown 68 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 14%
Student > Master 9 13%
Student > Doctoral Student 8 12%
Researcher 8 12%
Student > Bachelor 7 10%
Other 11 16%
Unknown 16 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 25%
Agricultural and Biological Sciences 15 22%
Medicine and Dentistry 6 9%
Environmental Science 2 3%
Engineering 2 3%
Other 5 7%
Unknown 22 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 February 2019.
All research outputs
#12,744,018
of 22,831,537 outputs
Outputs from BMC Genomics
#4,401
of 10,655 outputs
Outputs of similar age
#124,037
of 284,596 outputs
Outputs of similar age from BMC Genomics
#146
of 385 outputs
Altmetric has tracked 22,831,537 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,655 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 57% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 284,596 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.
We're also able to compare this research output to 385 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.