↓ Skip to main content

Supplementation of different fat sources affects growth performance and carcass composition of finishing pigs

Overview of attention for article published in Journal of Animal Science and Biotechnology, August 2018
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (65th percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
1 X user
patent
1 patent
googleplus
1 Google+ user

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Supplementation of different fat sources affects growth performance and carcass composition of finishing pigs
Published in
Journal of Animal Science and Biotechnology, August 2018
DOI 10.1186/s40104-018-0274-9
Pubmed ID
Authors

Yanhong Liu, Dong Yong Kil, Victor G. Perez-Mendoza, Minho Song, James E. Pettigrew

Abstract

There are various fat sources with different energy values and fatty acid compositions that may affect growth performance and carcass composition of grow-finishing pigs. A higher net energy was recently reported in choice white grease compared with soybean oil. Therefore, two experiments were conducted to determine whether practical responses confirm that difference between choice white grease and soybean oil, and to extend the observations to other fat sources. In Exp. 1, pigs fed fats had lower (P < 0.05) average daily feed intake in phase II and overall period, greater (P < 0.05) gain:feed in phase I, phase II, and overall period than pigs fed the control diet. Pigs fed fats tended (P = 0.057) to have thicker backfat depth at the last rib than those fed control. Pigs fed 6% fats had greater (P < 0.01) gain:feed in phase II and overall period than pigs fed 3% fats. During phase I, pigs fed choice white grease grew faster (P < 0.05) than pigs fed soybean oil. In Exp. 2, pigs fed dietary fats (soybean oil, choice white grease, animal-vegetable blend, palm oil, or tallow) had greater (P < 0.01) gain:feed in each phase and overall period, greater (P < 0.01) average daily gain in phase I, but lower (P < 0.01) average daily feed intake in phase II an overall than pigs fed the control diets. The choice white grease also increased (P < 0.05) average daily gain during phase I compared with soybean oil. Pigs fed palm oil had thicker (P < 0.05) backfat depth at the 10th rib than those fed soybean oil, animal-vegetable blend, or tallow. Inclusion of 6% dietary fat improved feed efficiency of finishing pigs, while different fats produced different practical results that may be consistent with their different energy values. Results from the early stage indicate that dietary fats with relatively more saturated fatty acids may provide greater energy than those with relatively more unsaturated fatty acids for growing pigs.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 20%
Student > Master 4 13%
Researcher 3 10%
Student > Ph. D. Student 3 10%
Other 2 7%
Other 2 7%
Unknown 10 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 37%
Environmental Science 3 10%
Chemistry 2 7%
Chemical Engineering 1 3%
Immunology and Microbiology 1 3%
Other 3 10%
Unknown 9 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 April 2020.
All research outputs
#7,208,166
of 25,385,509 outputs
Outputs from Journal of Animal Science and Biotechnology
#123
of 905 outputs
Outputs of similar age
#116,955
of 342,201 outputs
Outputs of similar age from Journal of Animal Science and Biotechnology
#5
of 20 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one has received more attention than most of these and is in the 71st percentile.
So far Altmetric has tracked 905 research outputs from this source. They receive a mean Attention Score of 3.3. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,201 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.