↓ Skip to main content

The genome-wide transcriptional regulatory landscape of ecdysone in the silkworm

Overview of attention for article published in Epigenetics & Chromatin, August 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The genome-wide transcriptional regulatory landscape of ecdysone in the silkworm
Published in
Epigenetics & Chromatin, August 2018
DOI 10.1186/s13072-018-0216-y
Pubmed ID
Authors

Dong Cheng, Tingcai Cheng, Xi Yang, Quan Zhang, Jianfeng Fu, Tieshan Feng, Jiao Gong, Qingyou Xia

Abstract

The silkworm, Bombyx mori, a typical representative of metamorphic insects, is of great agricultural and economic importance. The steroid hormone ecdysone (20-hydroxyecdysone, 20E) is the central regulator of insect developmental transitions, and its nuclear receptors are crucial for numerous biological processes, including reproduction, metabolism, and immunity. However, genome-wide DNA regulatory elements and the ecdysone receptor (EcR) that control these programs of gene expression are not well defined. In this study, we investigated the alterations in three types of histone modification in silkworm embryonic cells treated with 20E by chromatin immunoprecipitation sequencing (ChIP-seq). We identified enhancers using histone modifications and derived genome-wide ecdysone-dependent enhancer activity maps in the silkworm. We found enhancers enriched for monomethylation of histone H3 Lys4 (H3K4me1) that showed dynamic changes in acetylation of histone H3 Lys27 (H3K27ac) after 20E treatment and functioned to regulate the transcription of specific genes. EcR regulated transcription by binding not only to proximal promoters but also to the distal enhancers of target genes. Moreover, only 52.65% EcR peaks contained ecdysone response element (EcRE) motif, suggesting that EcR regulates the expression of target genes not only by binding directly to EcRE, but also by binding with other transcription factor. Our findings provide novel insights into the complex regulatory landscape of hormone-responsive cell activity and a basis for understanding the complex transcriptional regulatory processes of ecdysone.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 17%
Researcher 2 11%
Student > Master 2 11%
Lecturer 1 6%
Student > Bachelor 1 6%
Other 4 22%
Unknown 5 28%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 28%
Agricultural and Biological Sciences 4 22%
Neuroscience 2 11%
Social Sciences 1 6%
Computer Science 1 6%
Other 0 0%
Unknown 5 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 August 2018.
All research outputs
#20,663,600
of 25,385,509 outputs
Outputs from Epigenetics & Chromatin
#542
of 614 outputs
Outputs of similar age
#267,665
of 344,101 outputs
Outputs of similar age from Epigenetics & Chromatin
#17
of 18 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 614 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 6th percentile – i.e., 6% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 344,101 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.