↓ Skip to main content

Enzymes involved in the anaerobic degradation of phenol by the sulfate-reducing bacterium Desulfatiglans anilini

Overview of attention for article published in BMC Microbiology, August 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Enzymes involved in the anaerobic degradation of phenol by the sulfate-reducing bacterium Desulfatiglans anilini
Published in
BMC Microbiology, August 2018
DOI 10.1186/s12866-018-1238-0
Pubmed ID
Authors

Xiaoman Xie, Nicolai Müller

Abstract

The sulfate-reducing bacterium Desulfatiglans anilini can grow with phenol as sole source of carbon and energy under strictly anaerobic, sulfate-reducing conditions. In the nitrate-reducing bacterium Thauera aromatica, the enzymes involved in phenol degradation have been well elucidated, whereas the anaerobic phenol degradation pathway by D. anilini was not studied in detail yet. The pathway of anaerobic phenol degradation by the sulfate-reducing bacterium Desulfatiglans anilini was studied by identification of genes coding for phenylphosphate synthase (encoded by pps genes) and phenylphosphate carboxylase (encoded by ppc genes) in the genome of D. anilini, by analysis of the transcription and translation of pps-ppc genes, and by measurement of phenylphosphate synthase activity in cell-free extracts of phenol-grown cells. The majority of genes involved in phenol degradation were found to be organized in one gene cluster. The gene cluster contained genes ppsα (phenylphosphate synthase alpha subunit), ppsβ (phenylphosphate synthase beta subunit), ppcβ (phenylphosphate carboxylase beta subunit), as well as 4-hydroxybenzoyl-CoA ligase and 4-hydroxylbenzoyl-CoA reductase-encoding genes. The genes ppsγ (phenylphosphate synthase gamma subunit), ppcα (phenylphosphate carboxylase alpha subunit) and ppcδ (phenylphosphate carboxylase delta subunit) were located elsewhere in the genome of D. anilini, and no obvious homologue of ppcγ (phenylphosphate carboxylase gamma subunit) was found in the genome. Induction of genes pps and ppc during growth on phenol was confirmed by reverse transcription polymerase chain reaction. Total proteome analysis revealed that the abundance of enzymes encoded by the gene cluster under study was much higher in phenol-grown cells than that in benzoate-grown cells. In in-vitro enzyme assays with cell-free extracts of phenol-grown cells, phenylphosphate was formed from phenol in the presence of ATP, Mg2+, Mn2+, K+ as co-factors. The genes coding for enzymes involved in the anaerobic phenol degradation pathway were identified in the sulfate-reducing bacterium D. anilini. The results indicate that the first steps of anaerobic phenol degradation in D. anilini are phosphorylation of phenol to phenylphosphate by phenylphosphate synthase and carboxylation of phenylphosphate by phenylphosphate carboxylase.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 21%
Researcher 6 21%
Student > Ph. D. Student 5 17%
Student > Master 2 7%
Professor 1 3%
Other 1 3%
Unknown 8 28%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 21%
Environmental Science 4 14%
Engineering 3 10%
Chemistry 2 7%
Agricultural and Biological Sciences 2 7%
Other 4 14%
Unknown 8 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 August 2018.
All research outputs
#20,532,290
of 23,102,082 outputs
Outputs from BMC Microbiology
#2,708
of 3,217 outputs
Outputs of similar age
#292,032
of 335,220 outputs
Outputs of similar age from BMC Microbiology
#46
of 54 outputs
Altmetric has tracked 23,102,082 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,217 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,220 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 54 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.