↓ Skip to main content

No up-regulation of the phosphatidylethanolamine N-methyltransferase pathway and choline production by sex hormones in cats

Overview of attention for article published in BMC Veterinary Research, November 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
No up-regulation of the phosphatidylethanolamine N-methyltransferase pathway and choline production by sex hormones in cats
Published in
BMC Veterinary Research, November 2015
DOI 10.1186/s12917-015-0591-6
Pubmed ID
Authors

Chiara Valtolina, Arie B. Vaandrager, Robert P. Favier, Joris H. Robben, Maidina Tuohetahuntila, Anne Kummeling, Isabelle Jeusette, Jan Rothuizen

Abstract

Feline hepatic lipidosis (FHL) is a common cholestatic disease affecting cats of any breed, age and sex. Both choline deficiency and low hepatic phosphatidylethanolamine N-methyltransferase (PEMT) activity are associated with hepatic lipidosis (HL) in humans, mice and rats. The PEMT expression is known to be upregulated by oestrogens, protecting the females in these species from the development of HL when exposed to choline deficient diets. The aim of the present study was to evaluate the influence of sex hormones on choline synthesis via the PEMT pathway in healthy male and female cats before and after spaying/neutering, when fed a diet with recommended dietary choline content. From six female and six male cats PEMT activity was assayed directly in liver biopsies taken before and after spaying/neutering, and assessed indirectly by analyses of PEMT-specific hepatic phosphatidylcholine (PC) species and plasma choline levels. Hepatic PEMT activity did not differ between intact female and male cats and no changes upon spaying/neutering were observed. Likewise, no significant differences in liver PC content and PEMT-specific polyunsaturated PC species were found between the sexes and before or after spaying/neutering. These results suggest that choline synthesis in cats differs from what is observed in humans, mice and rats. The lack of evident influence of sex hormones on the PEMT pathway makes it unlikely that spaying/neutering predisposes cats for HL by causing PC deficiency as suggested in other species.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 22%
Student > Master 4 17%
Student > Bachelor 2 9%
Librarian 1 4%
Other 1 4%
Other 1 4%
Unknown 9 39%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 22%
Medicine and Dentistry 2 9%
Agricultural and Biological Sciences 2 9%
Veterinary Science and Veterinary Medicine 1 4%
Environmental Science 1 4%
Other 2 9%
Unknown 10 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 November 2015.
All research outputs
#20,295,501
of 22,832,057 outputs
Outputs from BMC Veterinary Research
#2,417
of 3,050 outputs
Outputs of similar age
#238,638
of 284,824 outputs
Outputs of similar age from BMC Veterinary Research
#29
of 38 outputs
Altmetric has tracked 22,832,057 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,050 research outputs from this source. They receive a mean Attention Score of 3.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 284,824 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 38 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.