↓ Skip to main content

Genome-wide analysis of purple acid phosphatase structure and expression in ten vegetable species

Overview of attention for article published in BMC Genomics, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide analysis of purple acid phosphatase structure and expression in ten vegetable species
Published in
BMC Genomics, August 2018
DOI 10.1186/s12864-018-5022-1
Pubmed ID
Authors

Lulu Xie, Qingmao Shang

Abstract

Acquisition of external phosphorus (P) and optimisation of internal P are essential for plant growth and development, and insufficient availability of P in soils is a major challenge in agriculture. Members of the purple acid phosphatase (PAP) family of enzymes are candidates for increasing P use efficiency. Herein, we identified PAP homologs in the genomes of 10 vegetable species, along with Arabidopsis thaliana and Amborella trichopoda as references, to provide fundamental knowledge for this family. Phylogenetic analysis of protein sequences revealed nine distinct clades, indicating that functional differentiation of extant PAPs was established prior to the emergence of early angiosperms, and conserved among homologs in each clade. Analysis of transcript abundance in different tissues (root, stem, leaf, flower, and fruit) and following phosphates (Pi) starvation treatments from published RNA-seq transcriptome datasets facilitated comprehensive evaluation of expression patterns, and some groups of tissue-specific and Pi starvation-induced PAPs were characterised. Conserved motifs identified from upstream sequences of homologs that are highly expressed in particular tissues or following starvation treatment suggests that divergence in PAP gene expression is associated with cis-acting elements in promoters. The genome-wide analysis of PAP enzyme structure and transcriptional expression patterns advance our understanding of PAP family in vegetables genomes. Therefore, PAP homologs with known enzyme structures and expression profiles could serve as targets for plant breeding and/or genetic engineering programs to improve P acquisition and use.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 19%
Student > Ph. D. Student 5 16%
Student > Master 3 9%
Student > Doctoral Student 2 6%
Other 1 3%
Other 2 6%
Unknown 13 41%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 41%
Biochemistry, Genetics and Molecular Biology 5 16%
Unknown 14 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 September 2018.
All research outputs
#17,989,170
of 23,102,082 outputs
Outputs from BMC Genomics
#7,611
of 10,709 outputs
Outputs of similar age
#240,601
of 335,278 outputs
Outputs of similar age from BMC Genomics
#112
of 182 outputs
Altmetric has tracked 23,102,082 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,709 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,278 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 182 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.