↓ Skip to main content

Identification of alternative splicing events by RNA sequencing in early growth tomato fruits

Overview of attention for article published in BMC Genomics, November 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
6 X users

Citations

dimensions_citation
48 Dimensions

Readers on

mendeley
68 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of alternative splicing events by RNA sequencing in early growth tomato fruits
Published in
BMC Genomics, November 2015
DOI 10.1186/s12864-015-2128-6
Pubmed ID
Authors

Yuan Sun, Han Xiao

Abstract

Alternative splicing (AS) regulates multiple biological processes including flowering, circadian and stress response in plant. Although accumulating evidences indicate that AS is developmentally regulated, how AS responds to developmental cues is not well understood. Early fruit growth mainly characterized by active cell division and cell expansion contributes to the formation of fruit morphology and quality traits. Transcriptome profiling has revealed the coordinated complex regulation of gene expression in the process. High throughput RNA sequencing (RNA-seq) technology is advancing the genome-wide analysis of AS events in plant species, but the landscape of AS in early growth fruit is still not available for tomato (Solanum lycopersicum), a model plant for fleshy fruit development study. Using RNA-seq, we surveyed the AS patterns in tomato seedlings, flowers and young developing fruits and found that 59.3 % of expressed multi-exon genes underwent AS in these tissues. The predominant type of AS events is intron retention, followed by alternative splice donor and acceptor, whereas exon skipping has the lowest frequency. Although the frequencies of AS events are similar among seedlings, flowers and early growth fruits, the fruits generated more splice variants per gene. Further comparison of gene expression in early growth fruits at 2, 5 and 10 days post anthesis revealed that 5206 multi-exon genes had at least one splice variants differentially expressed during early fruit development, whereas only 1059 out of them showed differential expression at gene level. We also identified 27 multi-exon genes showing differential splicing during early fruit growth. In addition, the study discovered 2507 new transcription regions (NTRs) unlinked to the annotated chromosomal regions, from where 956 putative protein coding transcripts and 1690 putative long non-coding RNAs were identified. Our genome-wide analysis of AS events reveals a distinctive AS pattern in early growth tomato fruits. The landscape of AS obtained in this study will facilitate future investigation on transcriptome complexity and AS regulation during early fruit growth in tomato. The newly found NTRs will also be useful for updating the tomato genome annotation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 68 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 2 3%
United States 1 1%
Italy 1 1%
Unknown 64 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 23 34%
Student > Ph. D. Student 10 15%
Student > Doctoral Student 8 12%
Student > Master 7 10%
Student > Bachelor 3 4%
Other 7 10%
Unknown 10 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 36 53%
Biochemistry, Genetics and Molecular Biology 11 16%
Veterinary Science and Veterinary Medicine 1 1%
Business, Management and Accounting 1 1%
Chemical Engineering 1 1%
Other 2 3%
Unknown 16 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 August 2016.
All research outputs
#13,450,711
of 22,833,393 outputs
Outputs from BMC Genomics
#5,002
of 10,655 outputs
Outputs of similar age
#119,501
of 252,470 outputs
Outputs of similar age from BMC Genomics
#181
of 398 outputs
Altmetric has tracked 22,833,393 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,655 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 252,470 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 398 others from the same source and published within six weeks on either side of this one. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.