↓ Skip to main content

The role of YAP/TAZ activity in cancer metabolic reprogramming

Overview of attention for article published in Molecular Cancer, September 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • High Attention Score compared to outputs of the same age and source (94th percentile)

Mentioned by

news
1 news outlet
twitter
3 X users
wikipedia
1 Wikipedia page

Citations

dimensions_citation
120 Dimensions

Readers on

mendeley
157 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The role of YAP/TAZ activity in cancer metabolic reprogramming
Published in
Molecular Cancer, September 2018
DOI 10.1186/s12943-018-0882-1
Pubmed ID
Authors

Xiaodong Zhang, Haiying Zhao, Yan Li, Di Xia, Liang Yang, Yingbo Ma, Hangyu Li

Abstract

In contrast to normal cells, which use the aerobic oxidation of glucose as their main energy production method, cancer cells prefer to use anaerobic glycolysis to maintain their growth and survival, even under normoxic conditions. Such tumor cell metabolic reprogramming is regulated by factors such as hypoxia and the tumor microenvironment. In addition, dysregulation of certain signaling pathways also contributes to cancer metabolic reprogramming. Among them, the Hippo signaling pathway is a highly conserved tumor suppressor pathway. The core oncosuppressive kinase cascade of Hippo pathway inhibits the nuclear transcriptional co-activators YAP and TAZ, which are the downstream effectors of Hippo pathway and oncogenic factors in many solid cancers. YAP/TAZ function as key nodes of multiple signaling pathways and play multiple regulatory roles in cancer cells. However, their roles in cancer metabolic reprograming are less clear. In the present review, we examine progress in research into the regulatory mechanisms of YAP/TAZ on glucose metabolism, fatty acid metabolism, mevalonate metabolism, and glutamine metabolism in cancer cells. Determining the roles of YAP/TAZ in tumor energy metabolism, particularly in relation to the tumor microenvironment, will provide new strategies and targets for the selective therapy of metabolism-related cancers.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 157 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 157 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 25 16%
Researcher 24 15%
Student > Bachelor 19 12%
Student > Master 17 11%
Student > Doctoral Student 9 6%
Other 16 10%
Unknown 47 30%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 54 34%
Medicine and Dentistry 15 10%
Agricultural and Biological Sciences 9 6%
Immunology and Microbiology 6 4%
Engineering 6 4%
Other 18 11%
Unknown 49 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 14. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 December 2022.
All research outputs
#2,192,423
of 23,275,636 outputs
Outputs from Molecular Cancer
#98
of 1,756 outputs
Outputs of similar age
#47,288
of 336,196 outputs
Outputs of similar age from Molecular Cancer
#2
of 39 outputs
Altmetric has tracked 23,275,636 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,756 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.8. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,196 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 94% of its contemporaries.