↓ Skip to main content

Genome-wide identification of MADS-box family genes in moso bamboo (Phyllostachys edulis) and a functional analysis of PeMADS5 in flowering

Overview of attention for article published in BMC Plant Biology, September 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
47 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide identification of MADS-box family genes in moso bamboo (Phyllostachys edulis) and a functional analysis of PeMADS5 in flowering
Published in
BMC Plant Biology, September 2018
DOI 10.1186/s12870-018-1394-2
Pubmed ID
Authors

Yuting Zhang, Dingqin Tang, Xinchun Lin, Mingquan Ding, Zaikang Tong

Abstract

MADS-box genes encode a large family of transcription factors that play significant roles in plant growth and development. Bamboo is an important non-timber forest product worldwide, but previous studies on the moso bamboo (Phyllostachys edulis) MADS-box gene family were not accurate nor sufficiently detailed. Here, a complete genome-wide identification and characterization of the MADS-box genes in moso bamboo was conducted. There was an unusual lack of type-I MADS-box genes in the bamboo genome database ( http://202.127.18.221/bamboo/index.php ), and some of the PeMADS sequences are fragmented and/or inaccurate. We performed several bioinformatics techniques to obtain more precise sequences using transcriptome assembly. In total, 42 MADS-box genes, including six new type-I MADS-box genes, were identified in bamboo, and their structures, phylogenetic relationships, predicted conserved motifs and promoter cis-elements were systematically investigated. An expression analysis of the bamboo MADS-box genes in floral organs and leaves revealed that several key members are involved in bamboo inflorescence development, like their orthologous genes in Oryza. The ectopic overexpression of one MADS-box gene, PeMADS5, in Arabidopsis triggered an earlier flowering time and the development of an aberrant flower phenotype, suggesting that PeMADS5 acts as a floral activator and is involved in bamboo flowering. We produced the most comprehensive information on MADS-box genes in moso bamboo. Additionally, a critical PeMADS gene (PeMADS5) responsible for the transition from vegetative to reproductive growth was identified and shown to be related to bamboo floral development.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 15%
Student > Bachelor 4 10%
Researcher 4 10%
Professor 4 10%
Student > Master 3 8%
Other 5 13%
Unknown 13 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 28%
Biochemistry, Genetics and Molecular Biology 10 26%
Environmental Science 1 3%
Nursing and Health Professions 1 3%
Chemistry 1 3%
Other 0 0%
Unknown 15 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 September 2018.
All research outputs
#22,767,715
of 25,385,509 outputs
Outputs from BMC Plant Biology
#2,816
of 3,588 outputs
Outputs of similar age
#302,443
of 345,580 outputs
Outputs of similar age from BMC Plant Biology
#51
of 66 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,588 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 345,580 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 66 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.