↓ Skip to main content

Deep sequencing of the uterine immune response to bacteria during the equine oestrous cycle

Overview of attention for article published in BMC Genomics, November 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 tweeters

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Deep sequencing of the uterine immune response to bacteria during the equine oestrous cycle
Published in
BMC Genomics, November 2015
DOI 10.1186/s12864-015-2139-3
Pubmed ID
Authors

Christina D. Marth, Neil D. Young, Lisa Y. Glenton, Drew M. Noden, Glenn F. Browning, Natali Krekeler

Abstract

The steroid hormone environment in healthy horses seems to have a significant impact on the efficiency of their uterine immune response. The objective of this study was to characterize the changes in gene expression in the equine endometrium in response to the introduction of bacterial pathogens and the influence of steroid hormone concentrations on this expression. Endometrial biopsies were collected from five horses before and 3 h after the inoculation of Escherichia coli once in oestrus (follicle >35 mm in diameter) and once in dioestrus (5 days after ovulation) and analysed using high-throughput RNA sequencing techniques (RNA-Seq). Comparison between time points revealed that 2422 genes were expressed at significantly higher levels and 2191 genes at significantly lower levels 3 h post inoculation in oestrus in comparison to pre-inoculation levels. In dioestrus, the expression of 1476 genes was up-regulated and 383 genes were down-regulated post inoculation. Many immune related genes were found to be up-regulated after the introduction of E. coli. These include pathogen recognition receptors, particularly toll-like receptors TLR2 and 4 and NOD-like receptor NLRC5. In addition, several interleukins including IL1B, IL6, IL8 and IL1ra were significantly up-regulated. Genes for chemokines, including CCL 2, CXCL 6, 9, 10, 11 and 16 and those for antimicrobial peptides, including secretory phospholipase sPLA 2 , lipocalin 2, lysozyme and equine β-defensin 1, as well as the gene for tissue inhibitor for metalloproteinases TIMP-1 were also up-regulated post inoculation. The results of this study emphasize the complexity of an effective uterine immune response during acute endometritis and the tight balance between pro- and anti-inflammatory factors required for efficient elimination of bacteria. It is one of the first high-throughput analyses of the uterine inflammatory response in any species and several new potential targets for treatment of inflammatory diseases of the equine uterus have been identified.

Twitter Demographics

The data shown below were collected from the profiles of 3 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 50 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 20%
Researcher 6 12%
Student > Bachelor 5 10%
Professor 4 8%
Professor > Associate Professor 4 8%
Other 12 24%
Unknown 9 18%
Readers by discipline Count As %
Veterinary Science and Veterinary Medicine 20 40%
Agricultural and Biological Sciences 7 14%
Medicine and Dentistry 4 8%
Biochemistry, Genetics and Molecular Biology 2 4%
Immunology and Microbiology 2 4%
Other 2 4%
Unknown 13 26%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 August 2016.
All research outputs
#7,065,970
of 11,346,162 outputs
Outputs from BMC Genomics
#4,382
of 6,796 outputs
Outputs of similar age
#158,730
of 308,504 outputs
Outputs of similar age from BMC Genomics
#311
of 452 outputs
Altmetric has tracked 11,346,162 research outputs across all sources so far. This one is in the 23rd percentile – i.e., 23% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,796 research outputs from this source. They receive a mean Attention Score of 4.2. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 308,504 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 452 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.