↓ Skip to main content

The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype

Overview of attention for article published in BMC Plant Biology, November 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 tweeter

Citations

dimensions_citation
67 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype
Published in
BMC Plant Biology, November 2015
DOI 10.1186/s12870-015-0664-5
Pubmed ID
Authors

Pham Anh Tuan, Songling Bai, Hideaki Yaegaki, Takayuki Tamura, Seisuke Hihara, Takaya Moriguchi, Kenji Oda

Abstract

Red coloration of fruit skin is one of the most important traits in peach (Prunus persica), and it is mainly due to the accumulation of anthocyanins. Three MYB10 genes, PpMYB10.1, PpMYB10.2, and PpMYB10.3, have been reported as important regulators of red coloration and anthocyanin biosynthesis in peach fruit. In this study, contribution of PpMYB10.1/2/3 to anthocyanin accumulation in the fruit skin was investigated in the Japanese peach cultivars, white-skinned 'Mochizuki' and red-skinned 'Akatsuki'. We then investigated the relationships between allelic type of PpMYB10.1 and skin color phenotype in 23 Japanese peach cultivars for future establishment of DNA-marker. During the fruit development of 'Mochizuki' and 'Akatsuki', anthocyanin accumulation was observed only in the skin of red 'Akatsuki' fruit in the late ripening stages concomitant with high mRNA levels of the last step gene leading to anthocyanin accumulation, UDP-glucose:flavonoid-3-O-glucosyltransferase (UFGT). This was also correlated with the expression level of PpMYB10.1. Unlike PpMYB10.1, expression levels of PpMYB10.2/3 were low in the skin of both 'Mochizuki' and 'Akatsuki' throughout fruit development. Moreover, only PpMYB10.1 revealed expression levels associated with total anthocyanin accumulation in the leaves and flowers of 'Mochizuki' and 'Akatsuki'. Introduction of PpMYB10.1 into tobacco increased the expression of tobacco UFGT, resulting in higher anthocyanin accumulation and deeper red transgenic tobacco flowers; however, overexpression of PpMYB10.2/3 did not alter anthocyanin content and color of transgenic tobacco flowers when compared with wild-type flowers. Dual-luciferase assay showed that the co-infiltration of PpMYB10.1 with PpbHLH3 significantly increased the activity of PpUFGT promoter. We also found close relationships of two PpMYB10.1 allelic types, MYB10.1-1/MYB10.1-2, with the intensity of red skin coloration. We showed that PpMYB10.1 is a major regulator of anthocyanin accumulation in red-skinned peach and that it activates PpUFGT transcription. PpMYB10.2/3 may be involved in functions other than anthocyanin accumulation in peach. The peach cultivars having two MYB10.1-2 types resulted in the white skin color. By contrast, those with two MYB10.1-1 or MYB10.1-1/MYB10.1-2 types showed respective red or pale red skin color. These findings contribute to clarifying the molecular mechanisms of anthocyanin accumulation and generating gene-based markers linked to skin color phenotypes.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 20%
Researcher 8 20%
Student > Doctoral Student 5 13%
Student > Bachelor 4 10%
Student > Postgraduate 3 8%
Other 8 20%
Unknown 4 10%
Readers by discipline Count As %
Agricultural and Biological Sciences 25 63%
Biochemistry, Genetics and Molecular Biology 5 13%
Medicine and Dentistry 2 5%
Social Sciences 1 3%
Unspecified 1 3%
Other 0 0%
Unknown 6 15%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 November 2015.
All research outputs
#4,874,088
of 6,588,247 outputs
Outputs from BMC Plant Biology
#675
of 1,009 outputs
Outputs of similar age
#168,744
of 248,261 outputs
Outputs of similar age from BMC Plant Biology
#48
of 80 outputs
Altmetric has tracked 6,588,247 research outputs across all sources so far. This one is in the 14th percentile – i.e., 14% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,009 research outputs from this source. They receive a mean Attention Score of 3.2. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 248,261 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 80 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.