↓ Skip to main content

Thromboxane promotes smooth muscle phenotype commitment but not remodeling of hypoxic neonatal pulmonary artery

Overview of attention for article published in Fibrogenesis & Tissue Repair, November 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Thromboxane promotes smooth muscle phenotype commitment but not remodeling of hypoxic neonatal pulmonary artery
Published in
Fibrogenesis & Tissue Repair, November 2015
DOI 10.1186/s13069-015-0037-6
Pubmed ID
Authors

Fabiana Postolow, Jena Fediuk, Nora Nolette, Martha Hinton, Shyamala Dakshinamurti

Abstract

Persistent pulmonary hypertension of the newborn (PPHN) is characterized by vasoconstriction and pulmonary vascular remodeling. Remodeling is believed to be a response to physical or chemical stimuli including pro-mitotic inflammatory mediators such as thromboxane. Our objective was to examine the effects of hypoxia and thromboxane signaling ex vivo and in vitro on phenotype commitment, cell cycle entry, and proliferation of PPHN and control neonatal pulmonary artery (PA) myocytes in tissue culture. To examine concurrent effects of hypoxia and thromboxane on myocyte growth, serum-fed first-passage newborn porcine PA myocytes were randomized into normoxic (21 % O2) or hypoxic (10 % O2) culture for 3 days, with daily addition of thromboxane mimetic U46619 (10(-9) to 10(-5) M) or diluent. Cell survival was detected by MTT assay. To determine the effect of chronic thromboxane exposure (versus whole serum) on activation of arterial remodeling, PPHN was induced in newborn piglets by a 3-day hypoxic exposure (FiO2 0.10); controls were 3 day-old normoxic and day 0 piglets. Third-generation PA were segmented and cultured for 3 days in physiologic buffer, Ham's F-12 media (in the presence or absence of 10 % fetal calf serum), or media with 10(-6) M U46619. DNA synthesis was measured by (3)H-thymidine uptake, protein synthesis by (3)H-leucine uptake, and proliferation by immunostaining for Ki67. Cell cycle entry was studied by laser scanning cytometry of nuclei in arterial tunica media after propidium iodide staining. Phenotype commitment was determined by immunostaining tunica media for myosin heavy chain and desmin, quantified by laser scanning cytometry. Contractile and synthetic myocyte subpopulations had differing responses to thromboxane challenge. U46619 decreased proliferation of synthetic and contractile myocytes. PPHN arteries exhibited decreased protein synthesis under all culture conditions. Serum-supplemented PA treated with U46619 had decreased G1/G0 phase myocytes and an increase in S and G2/M. When serum-deprived, PPHN PA incubated with U46619 showed arrested cell cycle entry (increased G0/G1, decreased S and G2/M) and increased abundance of contractile phenotype markers. We conclude that thromboxane does not initiate phenotypic dedifferentiation and proliferative activation in PPHN PA. Exposure to thromboxane triggers cell cycle exit and myocyte commitment to contractile phenotype.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Postgraduate 2 17%
Professor > Associate Professor 2 17%
Student > Ph. D. Student 1 8%
Researcher 1 8%
Student > Bachelor 1 8%
Other 1 8%
Unknown 4 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 2 17%
Medicine and Dentistry 2 17%
Veterinary Science and Veterinary Medicine 1 8%
Nursing and Health Professions 1 8%
Environmental Science 1 8%
Other 2 17%
Unknown 3 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 November 2015.
All research outputs
#14,241,439
of 22,833,393 outputs
Outputs from Fibrogenesis & Tissue Repair
#54
of 83 outputs
Outputs of similar age
#147,453
of 284,455 outputs
Outputs of similar age from Fibrogenesis & Tissue Repair
#2
of 3 outputs
Altmetric has tracked 22,833,393 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 83 research outputs from this source. They receive a mean Attention Score of 4.4. This one is in the 32nd percentile – i.e., 32% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 284,455 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 3 others from the same source and published within six weeks on either side of this one.