↓ Skip to main content

The Trem2 R47H Alzheimer’s risk variant impairs splicing and reduces Trem2 mRNA and protein in mice but not in humans

Overview of attention for article published in Molecular Neurodegeneration, September 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • Good Attention Score compared to outputs of the same age and source (65th percentile)

Mentioned by

news
1 news outlet
twitter
9 X users
patent
1 patent

Citations

dimensions_citation
97 Dimensions

Readers on

mendeley
181 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Trem2 R47H Alzheimer’s risk variant impairs splicing and reduces Trem2 mRNA and protein in mice but not in humans
Published in
Molecular Neurodegeneration, September 2018
DOI 10.1186/s13024-018-0280-6
Pubmed ID
Authors

Xianyuan Xiang, Thomas M. Piers, Benedikt Wefers, Kaichuan Zhu, Anna Mallach, Bettina Brunner, Gernot Kleinberger, Wilbur Song, Marco Colonna, Jochen Herms, Wolfgang Wurst, Jennifer M. Pocock, Christian Haass

Abstract

The R47H variant of the Triggering Receptor Expressed on Myeloid cells 2 (TREM2) significantly increases the risk for late onset Alzheimer's disease. Mouse models accurately reproducing phenotypes observed in Alzheimer' disease patients carrying the R47H coding variant are required to understand the TREM2 related dysfunctions responsible for the enhanced risk for late onset Alzheimer's disease. A CRISPR/Cas9-assisted gene targeting strategy was used to generate Trem2 R47H knock-in mice. Trem2 mRNA and protein levels as well as Trem2 splicing patterns were assessed in these mice, in iPSC-derived human microglia-like cells, and in human brains from Alzheimer's patients carrying the TREM2 R47H risk factor. Two independent Trem2 R47H knock-in mouse models show reduced Trem2 mRNA and protein production. In both mouse models Trem2 haploinsufficiency was due to atypical splicing of mouse Trem2 R47H, which introduced a premature stop codon. Cellular splicing assays using minigene constructs demonstrate that the R47H variant induced abnormal splicing only occurs in mice but not in humans. TREM2 mRNA levels and splicing patterns were both normal in iPSC-derived human microglia-like cells and patient brains with the TREM2 R47H variant. The Trem2 R47H variant activates a cryptic splice site that generates miss-spliced transcripts leading to Trem2 haploinsufficiency only in mice but not in humans. Since Trem2 R47H related phenotypes are mouse specific and do not occur in humans, humanized TREM2 R47H knock-in mice should be generated to study the cellular consequences caused by the human TREM2 R47H coding variant. Currently described phenotypes of Trem2 R47H knock-in mice can therefore not be translated to humans.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 181 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 181 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 36 20%
Researcher 33 18%
Student > Bachelor 21 12%
Student > Master 20 11%
Other 6 3%
Other 21 12%
Unknown 44 24%
Readers by discipline Count As %
Neuroscience 67 37%
Agricultural and Biological Sciences 19 10%
Biochemistry, Genetics and Molecular Biology 17 9%
Medicine and Dentistry 9 5%
Immunology and Microbiology 6 3%
Other 14 8%
Unknown 49 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 16. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 February 2022.
All research outputs
#2,270,828
of 25,622,179 outputs
Outputs from Molecular Neurodegeneration
#279
of 986 outputs
Outputs of similar age
#45,237
of 346,396 outputs
Outputs of similar age from Molecular Neurodegeneration
#8
of 20 outputs
Altmetric has tracked 25,622,179 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 986 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 16.6. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 346,396 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.