↓ Skip to main content

Comparative transcriptome analysis of lufenuron-resistant and susceptible strains of Spodoptera frugiperda (Lepidoptera: Noctuidae)

Overview of attention for article published in BMC Genomics, November 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
58 Dimensions

Readers on

mendeley
76 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparative transcriptome analysis of lufenuron-resistant and susceptible strains of Spodoptera frugiperda (Lepidoptera: Noctuidae)
Published in
BMC Genomics, November 2015
DOI 10.1186/s12864-015-2183-z
Pubmed ID
Authors

Antonio Rogério Bezerra do Nascimento, Pablo Fresia, Fernando Luis Cônsoli, Celso Omoto

Abstract

The evolution of insecticide resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) has resulted in large economic losses and disturbances to the environment and agroecosystems. Resistance to lufenuron, a chitin biosynthesis inhibitor insecticide, was recently documented in Brazilian populations of S. frugiperda. Thus, we utilized large-scale cDNA sequencing (RNA-Seq analysis) to compare the pattern of gene expression between lufenuron-resistant (LUF-R) and susceptible (LUF-S) S. larvae in an attempt to identify the molecular basis behind the resistance mechanism(s) of S. frugiperda to this insecticide. A transcriptome was assembled using approximately 19.6 million 100 bp-long single-end reads, which generated 18,506 transcripts with a N50 of 996 bp. A search against the NCBI non-redundant database generated 51.1 % (9,457) functionally annotated transcripts. A large portion of the alignments were homologous to insects, with the majority (45 %) being similar to sequences of Bombyx mori (Lepidoptera: Bombycidae). Moreover, 10 % of the alignments were similar to sequences of various species of Spodoptera (Lepidoptera: Noctuidae), with 3 % of them being similar to sequences of S. frugiperda. A comparative analysis of the gene expression between LUF-R and LUF-S S. frugiperda larvae identified 940 differentially expressed transcripts (p ≤ 0.05, t-test; fold change ≥ 4). Six of them were associated with cuticle metabolism. Of those, four were overexpressed in LUF-R larvae. The machinery involved with the detoxification process was represented by 35 differentially expressed transcripts; 24 of them belonging to P450 monooxygenases, four to glutathione-S-transferases, six to carboxylases and one to sulfotransferases. RNA-Seq analysis was validated for a number of selected candidate transcripts by using quantitative real time PCR (qPCR). The gene expression profile of LUF-R larvae of S. frugiperda differs from LUF-S larvae. In general, gene expression is much higher in resistant larvae when compared to the susceptible ones, particularly for those genes involved with pathways for xenobiotic detoxification, mainly represented by P450 monooxygenases transcripts. Our data indicate that enzymes involved with the detoxification process, and mostly the P450, are one of the resistance mechanisms employed by the LUF-R S. frugiperda larvae against lufenuron.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 76 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
Switzerland 1 1%
Unknown 74 97%

Demographic breakdown

Readers by professional status Count As %
Student > Master 19 25%
Researcher 14 18%
Student > Ph. D. Student 8 11%
Student > Bachelor 7 9%
Other 5 7%
Other 9 12%
Unknown 14 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 44 58%
Biochemistry, Genetics and Molecular Biology 11 14%
Engineering 1 1%
Unknown 20 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 November 2015.
All research outputs
#14,241,439
of 22,833,393 outputs
Outputs from BMC Genomics
#5,703
of 10,655 outputs
Outputs of similar age
#201,912
of 386,452 outputs
Outputs of similar age from BMC Genomics
#231
of 387 outputs
Altmetric has tracked 22,833,393 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,655 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 386,452 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 387 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.