↓ Skip to main content

Combinatory strategy for characterizing and understanding the ethanol synthesis pathway in cyanobacteria cell factories

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, November 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (91st percentile)
  • High Attention Score compared to outputs of the same age and source (95th percentile)

Mentioned by

news
2 news outlets
twitter
1 X user

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
68 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Combinatory strategy for characterizing and understanding the ethanol synthesis pathway in cyanobacteria cell factories
Published in
Biotechnology for Biofuels and Bioproducts, November 2015
DOI 10.1186/s13068-015-0367-z
Pubmed ID
Authors

Guodong Luan, Yunjing Qi, Min Wang, Zhimin Li, Yangkai Duan, Xiaoming Tan, Xuefeng Lu

Abstract

Photosynthetic production of chemicals and fuels by recycling CO2 in cyanobacteria is a promising solution facing energy shortage and resource declination. Ethanol is an attractive and demonstrative biofuel product, and ethanol synthesis in cyanobacteria has been achieved by assembling of a pathway consisting of pyruvate decarboxylase (PDCzm) and alcohol dehydrogenase II (slr1192). For enabling more powerful ethanol photosynthetic production, an optimized and balanced catalyzing route was required. In this work, we provided a paradigm for systematically characterizing and optimizing the PDCzm-slr1192 pathway from engineered cyanobacteria strains, combining in vitro reconstitution, genetic engineering and feeding-cultivation. We reconstituted the PDCzm-slr1192 pathway in vitro and performed specific titration assays for enzymes, substrates, cofactors, and metal ions. In the in vitro system, K 50 of PDCzm was 0.326 μM, with a V max of 2.074 μM/s; while for slr1192, the values were 0.109 μM and 1.722 μM/s, respectively. Titration response discrepancy indicated that PDCzm rather than slr1192 was the rate-limiting factor for ethanol synthesis. In addition, a 4:6 concentration ratio of PDCzm-slr1192 would endow the reaction with a maximal specific catalytic activity. Titration assays for other components were also performed. K m values for NADPH, pyruvate, TPP, Mg(2+) and acetaldehyde were 0.136, 6.496, 0.011, 0.104, and 0.393 mM, respectively. We further constructed Synechocystis mutant strains with diverse PDCzm-slr1192 concentrations and ratios, and compared the growth and ethanol synthesis performances. The results revealed that activities of PDCzm indeed held control over the ethanol generation capacities. We performed pyruvate-feeding treatment with the newly developed Syn-YQ4 strain, and confirmed that improvement of pyruvate supply would direct more carbon flow to ethanol formation. We systematically characterized and optimized the PDCzm-slr1192 pathway in engineered cyanobacteria for ethanol production. Information gained from in vitro monitoring and genetic engineering revealed that for further enhancing ethanol synthesis capacities, PDCzm activities needed enhancement, and the PDCzm-slr1192 ratio should be improved and held to about 1:1.5. Considering actual metabolites concentrations of cyanobacteria cells, enhancing pyruvate supply was also a promising strategy for further updating the current ethanol photosynthetic cell factories.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 68 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
China 1 1%
Unknown 67 99%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 19%
Student > Ph. D. Student 11 16%
Student > Bachelor 6 9%
Other 5 7%
Student > Master 5 7%
Other 8 12%
Unknown 20 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 29%
Biochemistry, Genetics and Molecular Biology 14 21%
Engineering 4 6%
Chemical Engineering 2 3%
Chemistry 2 3%
Other 3 4%
Unknown 23 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 17. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 April 2017.
All research outputs
#2,174,492
of 25,374,647 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#89
of 1,578 outputs
Outputs of similar age
#34,904
of 392,797 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#2
of 46 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 392,797 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 91% of its contemporaries.
We're also able to compare this research output to 46 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 95% of its contemporaries.