↓ Skip to main content

Leucocyte-derived extracellular trap formation significantly contributes to Haemonchus contortus larval entrapment

Overview of attention for article published in Parasites & Vectors, November 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
74 Dimensions

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Leucocyte-derived extracellular trap formation significantly contributes to Haemonchus contortus larval entrapment
Published in
Parasites & Vectors, November 2015
DOI 10.1186/s13071-015-1219-1
Pubmed ID
Authors

Tamara Muñoz-Caro, Mario C. Rubio R, Liliana M. R. Silva, Gerd Magdowski, Ulrich Gärtner, Tom N. McNeilly, Anja Taubert, Carlos Hermosilla

Abstract

Polymorphonuclear neutrophil (PMN) and eosinophil extracellular trap (ETs) formation has recently been described as an important host effector mechanism against invading pathogens. So far, scarce evidence on metazoan-triggered ET formation has been published. We here describe for the first time Haemonchus contortus-triggered ETs being released by bovine PMN and ovine eosinophils in response to ensheathed and exsheathed third stage larvae (L3). The visualization of ETs was achieved by SEM analysis. The identification of classical ETs components was performed via fluorescence microscopy analysis. The effect of larval exsheathment and parasite integrity on ET formation was evaluated via Pico Green®- fluorescence intensities. ETs formation under acidic conditions was assessed by using media of different pH ranges. Parasite entrapment was evaluated microscopically after co-culture of PMN and L3. ET inhibition experiments were performed using inhibitors against NADPH oxidase, NE and MPO. Eosinophil-derived ETs were estimated via fluorescence microscopy analysis. L3 significantly induced PMN-mediated ETs and significant parasite entrapment through ETs structures was rapidly observed after 60 min of PMN and L3 co-culture. Co-localization studies of PMN-derived extracellular DNA with histones (H3), neutrophil elastase (NE) and myeloperoxidase (MPO) in parasite-entrapping structures confirmed the classical characteristics of ETs. Haemonchus contortus-triggered ETs were significantly diminished by NADPH oxidase-, NE- and MPO-inhibition. Interestingly, different forms of ETs, i.e. aggregated (aggETs), spread (sprETs) and diffused (diffETs) ETs, were induced by L3. AggETs and sprETs firmly ensnared larvae in a time dependent manner. Significantly stronger aggETs reactions were detected upon exposure of PMN to ensheathed larvae than to exsheathed ones. Low pH conditions as are present in the abomasum did not block ETosis and led to a moderate decrease of ETs. Eosinophil-ETs were identified extruding DNA via fluorescence staining. We postulate that ETs may limit the establishment of H. contortus within the definitive host by immobilizing the larvae and hampering them from migrating into the site of infection. Consequently, H. contortus-mediated ET formation might have an impact on the outcome of the disease. Finally, besides PMN-triggered ETs, we here present first indications of ETs being released by eosinophils upon H. contortus L3 exposure.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 2%
Unknown 44 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 27%
Student > Master 8 18%
Student > Ph. D. Student 6 13%
Student > Bachelor 4 9%
Student > Doctoral Student 3 7%
Other 3 7%
Unknown 9 20%
Readers by discipline Count As %
Immunology and Microbiology 10 22%
Biochemistry, Genetics and Molecular Biology 6 13%
Veterinary Science and Veterinary Medicine 6 13%
Agricultural and Biological Sciences 4 9%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Other 4 9%
Unknown 14 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 November 2015.
All research outputs
#20,297,343
of 22,834,308 outputs
Outputs from Parasites & Vectors
#4,848
of 5,467 outputs
Outputs of similar age
#324,499
of 387,189 outputs
Outputs of similar age from Parasites & Vectors
#142
of 154 outputs
Altmetric has tracked 22,834,308 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,467 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 387,189 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 154 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.