↓ Skip to main content

Dosimetric impact of different CT datasets for stereotactic treatment planning using 3D conformal radiotherapy or volumetric modulated arc therapy

Overview of attention for article published in Radiation Oncology, December 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Dosimetric impact of different CT datasets for stereotactic treatment planning using 3D conformal radiotherapy or volumetric modulated arc therapy
Published in
Radiation Oncology, December 2015
DOI 10.1186/s13014-015-0557-7
Pubmed ID
Authors

Markus Oechsner, Leonhard Odersky, Johannes Berndt, Stephanie Elisabeth Combs, Jan Jakob Wilkens, Marciana Nona Duma

Abstract

The purpose of this study was to assess the impact on dose to the planning target volume (PTV) and organs at risk (OAR) by using four differently generated CT datasets for dose calculation in stereotactic body radiotherapy (SBRT) of lung and liver tumors. Additionally, dose differences between 3D conformal radiotherapy and volumetric modulated arc therapy (VMAT) plans calculated on these CT datasets were determined. Twenty SBRT patients, ten lung cases and ten liver cases, were retrospectively selected for this study. Treatment plans were optimized on average intensity projection (AIP) CTs using 3D conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT). Afterwards, the plans were copied to the planning CTs (PCT), maximum intensity projection (MIP) and mid-ventilation (MidV) CT datasets and dose was recalculated keeping all beam parameters and monitor units unchanged. Ipsilateral lung and liver volumes and dosimetric parameters for PTV (Dmean, D2, D98, D95), ipsilateral lung and liver (Dmean, V30, V20, V10) were determined and statistically analysed using Wilcoxon test. Significant but small mean differences were found for PTV dose between the CTs (lung SBRT: ≤2.5 %; liver SBRT: ≤1.6 %). MIPs achieved the smallest lung and the largest liver volumes. OAR mean doses in MIP plans were distinctly smaller than in the other CT datasets. Furthermore, overlapping of tumors with the diaphragm results in underestimated ipsilateral lung dose in MIP plans. Best agreement was found between AIP and MidV (lung SBRT). Overall, differences in liver SBRT were smaller than in lung SBRT and VMAT plans achieved slightly smaller differences than 3D-CRT plans. Only small differences were found for PTV parameters between the four CT datasets. Larger differences occurred for the doses to organs at risk (ipsilateral lung, liver) especially for MIP plans. No relevant differences were observed between 3D-CRT or VMAT plans. MIP CTs are not appropriate for OAR dose assessment. PCT, AIP and MidV resulted in similar doses. If a 4DCT is acquired PCT can be omitted using AIP or MidV for treatment planning.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 2%
Unknown 40 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 27%
Student > Ph. D. Student 9 22%
Student > Master 4 10%
Student > Postgraduate 3 7%
Student > Doctoral Student 2 5%
Other 7 17%
Unknown 5 12%
Readers by discipline Count As %
Medicine and Dentistry 14 34%
Physics and Astronomy 10 24%
Engineering 3 7%
Nursing and Health Professions 2 5%
Arts and Humanities 1 2%
Other 3 7%
Unknown 8 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 December 2015.
All research outputs
#20,297,343
of 22,834,308 outputs
Outputs from Radiation Oncology
#1,678
of 2,057 outputs
Outputs of similar age
#324,860
of 387,568 outputs
Outputs of similar age from Radiation Oncology
#42
of 55 outputs
Altmetric has tracked 22,834,308 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,057 research outputs from this source. They receive a mean Attention Score of 2.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 387,568 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 55 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.