↓ Skip to main content

High major histocompatibility complex class I polymorphism despite bottlenecks in wild and domesticated populations of the zebra finch (Taeniopygia guttata)

Overview of attention for article published in BMC Ecology and Evolution, December 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (79th percentile)
  • Good Attention Score compared to outputs of the same age and source (69th percentile)

Mentioned by

twitter
10 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
High major histocompatibility complex class I polymorphism despite bottlenecks in wild and domesticated populations of the zebra finch (Taeniopygia guttata)
Published in
BMC Ecology and Evolution, December 2015
DOI 10.1186/s12862-015-0546-3
Pubmed ID
Authors

Daniel J. Newhouse, Christopher N. Balakrishnan

Abstract

Two subspecies of zebra finch, Taeniopygia guttata castanotis and T. g. guttata are native to Australia and the Lesser Sunda Islands, respectively. The Australian subspecies has been domesticated and is now an important model system for research. Both the Lesser Sundan subspecies and domesticated Australian zebra finches have undergone population bottlenecks in their history, and previous analyses using neutral markers have reported reduced neutral genetic diversity in these populations. Here we characterize patterns of variation in the third exon of the highly variable major histocompatibility complex (MHC) class I α chain. As a benchmark for neutral divergence, we also report the first mitochondrial NADH dehydrogenase 2 (ND2) sequences in this important model system. Despite natural and human-mediated population bottlenecks, we find that high MHC class I polymorphism persists across all populations. As expected, we find higher levels of nucleotide diversity in the MHC locus relative to neutral loci, and strong evidence of positive selection acting on important residues forming the peptide-binding region (PBR). Clear population differentiation of MHC allele frequencies is also evident, and this may be due to adaptation to new habitats and associated pathogens and/or genetic drift. Whereas the MHC Class I locus shows broad haplotype sharing across populations, ND2 is the first locus surveyed to date to show reciprocal monophyly of the two subspecies. Despite genetic bottlenecks and genetic drift, all surveyed zebra finch populations have maintained high MHC Class I diversity. The diversity at the MHC Class I locus in the Lesser Sundan subspecies contrasts sharply with the lack of diversity in previously examined neutral loci, and may thus be a result of selection acting to maintain polymorphism. Given uncertainty in historical population demography, however, it is difficult to rule out neutral processes in maintaining the observed diversity. The surveyed populations also differ in MHC Class I allele frequencies, and future studies are needed to assess whether these changes result in functional immune differences.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 33%
Researcher 6 17%
Student > Master 5 14%
Student > Doctoral Student 3 8%
Other 2 6%
Other 4 11%
Unknown 4 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 24 67%
Biochemistry, Genetics and Molecular Biology 5 14%
Veterinary Science and Veterinary Medicine 1 3%
Unspecified 1 3%
Unknown 5 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 December 2016.
All research outputs
#5,379,297
of 25,374,917 outputs
Outputs from BMC Ecology and Evolution
#1,299
of 3,714 outputs
Outputs of similar age
#82,376
of 395,418 outputs
Outputs of similar age from BMC Ecology and Evolution
#22
of 73 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. Compared to these this one has done well and is in the 78th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 395,418 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 79% of its contemporaries.
We're also able to compare this research output to 73 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.