↓ Skip to main content

Modulation of mitochondrial DNA copy number in a model of glioblastoma induces changes to DNA methylation and gene expression of the nuclear genome in tumours

Overview of attention for article published in Epigenetics & Chromatin, September 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Modulation of mitochondrial DNA copy number in a model of glioblastoma induces changes to DNA methylation and gene expression of the nuclear genome in tumours
Published in
Epigenetics & Chromatin, September 2018
DOI 10.1186/s13072-018-0223-z
Pubmed ID
Authors

Xin Sun, Justin C. St John

Abstract

There are multiple copies of mitochondrial DNA (mtDNA) present in each cell type, and they are strictly regulated in a cell-specific manner by a group of nuclear-encoded mtDNA-specific replication factors. This strict regulation of mtDNA copy number is mediated by cell-specific DNA methylation of these replication factors. Glioblastoma multiforme, HSR-GBM1, cells are hyper-methylated and maintain low mtDNA copy number to support their tumorigenic status. We have previously shown that when HSR-GBM1 cells with 50% of their original mtDNA content were inoculated into mice, tumours grew more aggressively than non-depleted cells. However, when the cells possessed only 3% and 0.2% of their original mtDNA content, tumour formation was less frequent and the initiation of tumorigenesis was significantly delayed. Importantly, the process of tumorigenesis was dependent on mtDNA copy number being restored to pre-depletion levels. By performing whole genome MeDIP-Seq and RNA-Seq on tumours generated from cells possessing 100%, 50%, 0.3% and 0.2% of their original mtDNA content, we determined that restoration of mtDNA copy number caused significant changes to both the nuclear methylome and its transcriptome for each tumour type. The affected genes were specifically associated with gene networks and pathways involving behaviour, nervous system development, cell differentiation and regulation of transcription and cellular processes. The mtDNA-specific replication factors were also modulated. Our results highlight the bidirectional control of the nuclear and mitochondrial genomes through modulation of DNA methylation to control mtDNA copy number, which, in turn, modulates nuclear gene expression during tumorigenesis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 18%
Student > Ph. D. Student 7 18%
Student > Bachelor 5 13%
Other 3 8%
Professor 2 5%
Other 4 10%
Unknown 12 30%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 12 30%
Agricultural and Biological Sciences 5 13%
Medicine and Dentistry 3 8%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Nursing and Health Professions 2 5%
Other 3 8%
Unknown 13 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 September 2018.
All research outputs
#18,649,291
of 23,103,436 outputs
Outputs from Epigenetics & Chromatin
#495
of 568 outputs
Outputs of similar age
#259,246
of 337,668 outputs
Outputs of similar age from Epigenetics & Chromatin
#19
of 20 outputs
Altmetric has tracked 23,103,436 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 568 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.7. This one is in the 7th percentile – i.e., 7% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 337,668 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.