↓ Skip to main content

A weighted and integrated drug-target interactome: drug repurposing for schizophrenia as a use case

Overview of attention for article published in BMC Systems Biology, June 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

blogs
1 blog
twitter
2 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
37 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A weighted and integrated drug-target interactome: drug repurposing for schizophrenia as a use case
Published in
BMC Systems Biology, June 2015
DOI 10.1186/1752-0509-9-s4-s2
Pubmed ID
Authors

Liang-Chin Huang, Ergin Soysal, W Jim Zheng, Zhongming Zhao, Hua Xu, Jingchun Sun

Abstract

Computational pharmacology can uniquely address some issues in the process of drug development by providing a macroscopic view and a deeper understanding of drug action. Specifically, network-assisted approach is promising for the inference of drug repurposing. However, the drug-target associations coming from different sources and various assays have much noise, leading to an inflation of the inference errors. To reduce the inference errors, it is necessary and critical to create a comprehensive and weighted data set of drug-target associations. In this study, we created a weighted and integrated drug-target interactome (WinDTome) to provide a comprehensive resource of drug-target associations for computational pharmacology. We first collected drug-target interactions from six commonly used drug-target centered data sources including DrugBank, KEGG, TTD, MATADOR, PDSP Ki Database, and BindingDB. Then, we employed the record linkage method to normalize drugs and targets to the unique identifiers by utilizing the public data sources including PubChem, Entrez Gene, and UniProt. To assess the reliability of the drug-target associations, we assigned two scores (Score_S and Score_R) to each drug-target association based on their data sources and publication references. Consequently, the WinDTome contains 546,196 drug-target associations among 303,018 compounds and 4,113 genes. To assess the application of the WinDTome, we designed a network-based approach for drug repurposing using mental disorder schizophrenia (SCZ) as a case. Starting from 41 known SCZ drugs and their targets, we inferred a total of 264 potential SCZ drugs through the associations of drug-target with Score_S higher than two in WinDTome and human protein-protein interactions. Among the 264 SCZ-related drugs, 39 drugs have been investigated in clinical trials for SCZ treatment and 74 drugs for the treatment of other mental disorders, respectively. Compared with the results using other Score_S cutoff values, single data source, or the data from STITCH, the inference of 264 SCZ-related drugs had the highest performance. The WinDTome generated in this study contains comprehensive drug-target associations with confidence scores. Its application to the SCZ drug repurposing demonstrated that the WinDTome is promising to serve as a useful resource for drug repurposing.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Turkey 1 3%
India 1 3%
Unknown 34 92%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 19%
Student > Master 7 19%
Student > Bachelor 5 14%
Student > Ph. D. Student 5 14%
Other 4 11%
Other 6 16%
Unknown 3 8%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 8 22%
Medicine and Dentistry 7 19%
Chemistry 5 14%
Agricultural and Biological Sciences 3 8%
Computer Science 3 8%
Other 7 19%
Unknown 4 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 October 2022.
All research outputs
#4,195,868
of 23,575,346 outputs
Outputs from BMC Systems Biology
#121
of 1,135 outputs
Outputs of similar age
#51,854
of 267,715 outputs
Outputs of similar age from BMC Systems Biology
#2
of 29 outputs
Altmetric has tracked 23,575,346 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,135 research outputs from this source. They receive a mean Attention Score of 3.6. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,715 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 29 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.