↓ Skip to main content

Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, December 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
60 Dimensions

Readers on

mendeley
112 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii
Published in
Biotechnology for Biofuels and Bioproducts, December 2015
DOI 10.1186/s13068-015-0391-z
Pubmed ID
Authors

Adrián López García de Lomana, Sascha Schäuble, Jacob Valenzuela, Saheed Imam, Warren Carter, Damla D. Bilgin, Christopher B. Yohn, Serdar Turkarslan, David J. Reiss, Mónica V. Orellana, Nathan D. Price, Nitin S. Baliga

Abstract

Algae accumulate lipids to endure different kinds of environmental stresses including macronutrient starvation. Although this response has been extensively studied, an in depth understanding of the transcriptional regulatory network (TRN) that controls the transition into lipid accumulation remains elusive. In this study, we used a systems biology approach to elucidate the transcriptional program that coordinates the nitrogen starvation-induced metabolic readjustments that drive lipid accumulation in Chlamydomonas reinhardtii. We demonstrate that nitrogen starvation triggered differential regulation of 2147 transcripts, which were co-regulated in 215 distinct modules and temporally ordered as 31 transcriptional waves. An early-stage response was triggered within 12 min that initiated growth arrest through activation of key signaling pathways, while simultaneously preparing the intracellular environment for later stages by modulating transport processes and ubiquitin-mediated protein degradation. Subsequently, central metabolism and carbon fixation were remodeled to trigger the accumulation of triacylglycerols. Further analysis revealed that these waves of genome-wide transcriptional events were coordinated by a regulatory program orchestrated by at least 17 transcriptional regulators, many of which had not been previously implicated in this process. We demonstrate that the TRN coordinates transcriptional downregulation of 57 metabolic enzymes across a period of nearly 4 h to drive an increase in lipid content per unit biomass. Notably, this TRN appears to also drive lipid accumulation during sulfur starvation, while phosphorus starvation induces a different regulatory program. The TRN model described here is available as a community-wide web-resource at http://networks.systemsbiology.net/chlamy-portal. In this work, we have uncovered a comprehensive mechanistic model of the TRN controlling the transition from N starvation to lipid accumulation. The program coordinates sequentially ordered transcriptional waves that simultaneously arrest growth and lead to lipid accumulation. This study has generated predictive tools that will aid in devising strategies for the rational manipulation of regulatory and metabolic networks for better biofuel and biomass production.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 112 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Unknown 111 99%

Demographic breakdown

Readers by professional status Count As %
Researcher 25 22%
Student > Ph. D. Student 19 17%
Student > Master 14 13%
Student > Doctoral Student 8 7%
Other 7 6%
Other 20 18%
Unknown 19 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 32 29%
Biochemistry, Genetics and Molecular Biology 30 27%
Environmental Science 6 5%
Chemical Engineering 3 3%
Immunology and Microbiology 2 2%
Other 9 8%
Unknown 30 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 December 2015.
All research outputs
#20,674,485
of 25,394,764 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#1,286
of 1,579 outputs
Outputs of similar age
#291,600
of 395,463 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#44
of 49 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,579 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 10th percentile – i.e., 10% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 395,463 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 49 others from the same source and published within six weeks on either side of this one. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.