↓ Skip to main content

Asymmetric expression of H19 and ADIPOQ in concave/convex paravertebral muscles is associated with severe adolescent idiopathic scoliosis

Overview of attention for article published in Molecular Medicine, September 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Asymmetric expression of H19 and ADIPOQ in concave/convex paravertebral muscles is associated with severe adolescent idiopathic scoliosis
Published in
Molecular Medicine, September 2018
DOI 10.1186/s10020-018-0049-y
Pubmed ID
Authors

Heng Jiang, Fu Yang, Tao Lin, Wei Shao, Yichen Meng, Jun Ma, Ce Wang, Rui Gao, Xuhui Zhou

Abstract

Adolescent idiopathic scoliosis (AIS) is the most common paediatric spinal deformity. The etiology and pathology of AIS remain unexplained, and have been reported to involve a combination of genetic and epigenetic factors. Since paravertebral muscle imbalance plays an important role in the onset and progression of scoliosis, we aimed to investigate transcriptomic differences by RNA-seq and identify significantly differentially expressed transcripts in two sides of paravertebral muscle in AIS. RNA-seq was performed on 5 pairs of paravertebral muscle from 5 AIS patients. Significantly differentially expressed transcripts were validated by quantitative reverse polymerase chain reaction. Gene expression difference was correlated to clinical characteristics. We demonstrated that ADIPOQ mRNA and H19 is significantly differentially expressed between two sides of paravertebral muscle, relatively specific in the context of AIS. Relatively low H19 and high ADIPOQ mRNA expression levels in concave-sided muscle are associated with larger spinal curve and earlier age at initiation. We identified miR-675-5p encoded by H19 as a mechanistic regulator of ADIPOQ expression in AIS. We demonstrated that significantly reduced CCCTC-binding factor (CCTF) occupancy in the imprinting control region (ICR) of the H19 gene in the concave-sided muscle contributes to down-regulated H19 expression. RNA-seq revealed transcriptomic differences between two sides of paravertebral muscle in AIS patients. Our findings imply that transcriptomic differences caused by epigenetic factors in affected individuals may account for the structural and functional imbalance of paravertebral muscle, which can expand our etiologic understanding of this disease.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 16%
Student > Doctoral Student 3 12%
Student > Master 3 12%
Other 2 8%
Student > Ph. D. Student 2 8%
Other 5 20%
Unknown 6 24%
Readers by discipline Count As %
Medicine and Dentistry 6 24%
Biochemistry, Genetics and Molecular Biology 5 20%
Agricultural and Biological Sciences 3 12%
Engineering 2 8%
Nursing and Health Professions 1 4%
Other 1 4%
Unknown 7 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 September 2018.
All research outputs
#20,533,782
of 23,103,903 outputs
Outputs from Molecular Medicine
#1,017
of 1,155 outputs
Outputs of similar age
#297,307
of 341,703 outputs
Outputs of similar age from Molecular Medicine
#9
of 10 outputs
Altmetric has tracked 23,103,903 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,155 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,703 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one.