↓ Skip to main content

An investigation of the efficacy and mechanism of contrast-enhanced X-ray Computed Tomography utilizing iodine for large specimens through experimental and simulation approaches

Overview of attention for article published in BMC Physiology, December 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
61 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An investigation of the efficacy and mechanism of contrast-enhanced X-ray Computed Tomography utilizing iodine for large specimens through experimental and simulation approaches
Published in
BMC Physiology, December 2015
DOI 10.1186/s12899-015-0019-3
Pubmed ID
Authors

Zhiheng Li, Julia A. Clarke, Richard A. Ketcham, Matthew W. Colbert, Fei Yan

Abstract

Iodine-based solutions have long been known to be effective in aiding the differentiation among soft tissues in both fundamental anatomical research and for clinical diagnoses. Recently the combination of this particular contrasting agent with micro-computed tomography (micro-CT) has resulted in an array of high-quality image data, in which anatomical structures not visible in conventional CT can be identified and quantified. However, there has been only limited data available to inform detailed protocols for staining large specimens. Further, modeling of the staining mechanism has focused on simple diffusion processes. A low concentration of iodine-based buffered formalin solution with a long staining period was used to visualize soft-tissue structures in a large goose head. The staining effect was analyzed by serially measuring the micro-CT profiles across coronal sections throughout the staining period. Regular replacement of the staining solution combined with a longer staining period significantly improved contrast within tissues. A simplified one-dimensional Diffusion-Sorption model with a three-zone domain was used to simulate the diffusion process by calculating the concentration profile of iodine across the adductor region, which fits well with the experiment data. Observations of changes in the concentration of the staining agent and simulation results suggest that the sorption of iodine by tissues significantly affects the effective diffusion coefficient for the contrasting agent. The Diffusion-Sorption model better explains previously reported difficulties in staining large samples comprised of tissues with high partition coefficients (K d ). Differences in partition coefficient (K d ), bulk density (ρ b ), and porosity (θ) could further explain the observed variation in staining rate and maximal staining effect among different tissues. Recommended protocols for staining large specimens are detailed.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 61 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 61 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 30%
Student > Master 13 21%
Researcher 7 11%
Other 5 8%
Student > Bachelor 4 7%
Other 6 10%
Unknown 8 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 17 28%
Medicine and Dentistry 8 13%
Biochemistry, Genetics and Molecular Biology 6 10%
Engineering 4 7%
Earth and Planetary Sciences 3 5%
Other 11 18%
Unknown 12 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 December 2015.
All research outputs
#21,264,673
of 23,881,329 outputs
Outputs from BMC Physiology
#69
of 78 outputs
Outputs of similar age
#335,266
of 394,565 outputs
Outputs of similar age from BMC Physiology
#1
of 1 outputs
Altmetric has tracked 23,881,329 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 78 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 394,565 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them