↓ Skip to main content

CENH3-GFP: a visual marker for gametophytic and somatic ploidy determination in Arabidopsis thaliana

Overview of attention for article published in BMC Plant Biology, January 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • High Attention Score compared to outputs of the same age and source (94th percentile)

Mentioned by

blogs
1 blog
twitter
3 X users

Citations

dimensions_citation
140 Dimensions

Readers on

mendeley
86 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
CENH3-GFP: a visual marker for gametophytic and somatic ploidy determination in Arabidopsis thaliana
Published in
BMC Plant Biology, January 2016
DOI 10.1186/s12870-015-0700-5
Pubmed ID
Authors

Nico De Storme, Burcu Nur Keçeli, Linda Zamariola, Geert Angenon, Danny Geelen

Abstract

The in vivo determination of the cell-specific chromosome number provides a valuable tool in several aspects of plant research. However, current techniques to determine the endosystemic ploidy level do not allow non-destructive, cell-specific chromosome quantification. Particularly in the gametophytic cell lineages, which are physically encapsulated in the reproductive organ structures, direct in vivo ploidy determination has been proven very challenging. Using Arabidopsis thaliana as a model, we here assess the applicability of recombinant CENH3-GFP reporters for the labeling of the cell's chromocenters and for the monitoring of the gametophytic and somatic chromosome number in vivo. By modulating expression of a CENH3-GFP reporter cassette using different promoters, we isolated two reporter lines that allow for a clear and highly specific labeling of centromeric chromosome regions in somatic and gametophytic cells respectively. Using polyploid plant series and reproductive mutants, we demonstrate that the pWOX2-CENH3-GFP recombinant fusion protein allows for the determination of the gametophytic chromosome number in both male and female gametophytic cells, and additionally labels centromeric regions in early embryo development. Somatic centromere labeling through p35S-CENH3-GFP shows a maximum of ten centromeric dots in young dividing tissues, reflecting the diploid chromosome number (2x = 10), and reveals a progressive decrease in GFP foci frequency throughout plant development. Moreover, using chemical and genetic induction of endomitosis, we demonstrate that CENH3-mediated chromosome labeling provides an easy and valuable tool for the detection and characterization of endomitotic polyploidization events. This study demonstrates that the introgression of the pWOX2-CENH3-GFP reporter construct in Arabidopsis thaliana provides an easy and reliable methodology for determining the chromosome number in developing male and female gametes, and during early embryo development. Somatically expressed CENH3-GFP reporters, on the other hand, constitute a valuable tool to quickly determine the basic somatic ploidy level in young seedlings at the individual cell level and to detect and to quantify endomitotic polyploidization events in a non-destructive, microscopy-based manner.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 86 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Mexico 1 1%
United States 1 1%
Netherlands 1 1%
Unknown 83 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 21%
Researcher 13 15%
Student > Master 11 13%
Student > Bachelor 6 7%
Student > Postgraduate 6 7%
Other 12 14%
Unknown 20 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 38 44%
Biochemistry, Genetics and Molecular Biology 22 26%
Computer Science 3 3%
Chemical Engineering 1 1%
Chemistry 1 1%
Other 0 0%
Unknown 21 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 December 2016.
All research outputs
#3,610,544
of 22,837,982 outputs
Outputs from BMC Plant Biology
#220
of 3,252 outputs
Outputs of similar age
#62,871
of 393,343 outputs
Outputs of similar age from BMC Plant Biology
#3
of 56 outputs
Altmetric has tracked 22,837,982 research outputs across all sources so far. Compared to these this one has done well and is in the 84th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,252 research outputs from this source. They receive a mean Attention Score of 3.0. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,343 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 56 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 94% of its contemporaries.