↓ Skip to main content

Rainbow trout (Oncorhynchus mykiss) muscle satellite cells are targets of salmonid alphavirus infection

Overview of attention for article published in Veterinary Research, January 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Rainbow trout (Oncorhynchus mykiss) muscle satellite cells are targets of salmonid alphavirus infection
Published in
Veterinary Research, January 2016
DOI 10.1186/s13567-015-0301-1
Pubmed ID
Authors

Stéphane Biacchesi, Grégory Jouvion, Emilie Mérour, Abdelhak Boukadiri, Marion Desdouits, Simona Ozden, Michel Huerre, Pierre-Emmanuel Ceccaldi, Michel Brémont

Abstract

Sleeping disease in rainbow trout is characterized by an abnormal swimming behaviour of the fish which stay on their side at the bottom of the tanks. This sign is due to extensive necrosis and atrophy of red skeletal muscle induced by the sleeping disease virus (SDV), also called salmonid alphavirus 2. Infections of humans with arthritogenic alphaviruses, such as Chikungunya virus (CHIKV), are global causes of debilitating musculoskeletal diseases. The mechanisms by which the virus causes these pathologies are poorly understood due to the restrictive availability of animal models capable of reproducing the full spectrum of the disease. Nevertheless, it has been shown that CHIKV exhibits a particular tropism for muscle stem cells also known as satellite cells. Thus, SDV and its host constitute a relevant model to study in details the virus-induced muscle atrophy, the pathophysiological consequences of the infection of a particular cell-type in the skeletal muscle, and the regeneration of the muscle tissue in survivors together with the possible virus persistence. To study a putative SDV tropism for that particular cell type, we established an in vivo and ex vivo rainbow trout model of SDV-induced atrophy of the skeletal muscle. This experimental model allows reproducing the full panel of clinical signs observed during a natural infection since the transmission of the virus is arthropod-borne independent. The virus tropism in the muscle tissue was studied by immunohistochemistry together with the kinetics of the muscle atrophy, and the muscle regeneration post-infection was observed. In parallel, an ex vivo model of SDV infection of rainbow trout satellite cells was developed and virus replication and persistence in that particular cell type was followed up to 73 days post-infection. These results constitute the first observation of a specific SDV tropism for the muscle satellite cells.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Austria 1 2%
Unknown 50 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 25%
Student > Ph. D. Student 7 13%
Student > Bachelor 7 13%
Professor 3 6%
Other 3 6%
Other 9 17%
Unknown 10 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 25%
Veterinary Science and Veterinary Medicine 6 12%
Immunology and Microbiology 6 12%
Biochemistry, Genetics and Molecular Biology 4 8%
Nursing and Health Professions 2 4%
Other 6 12%
Unknown 15 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 January 2016.
All research outputs
#15,169,543
of 25,374,647 outputs
Outputs from Veterinary Research
#660
of 1,337 outputs
Outputs of similar age
#202,566
of 400,029 outputs
Outputs of similar age from Veterinary Research
#12
of 30 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,337 research outputs from this source. They receive a mean Attention Score of 5.0. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 400,029 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.