↓ Skip to main content

Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening

Overview of attention for article published in BMC Genomics, January 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
75 Dimensions

Readers on

mendeley
79 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening
Published in
BMC Genomics, January 2016
DOI 10.1186/s12864-015-2334-2
Pubmed ID
Authors

Shan Li, Ka Li, Zheng Ju, Dongyan Cao, Daqi Fu, Hongliang Zhu, Benzhong Zhu, Yunbo Luo

Abstract

Fruit ripening is a complex developmental process that depends on a coordinated regulation of numerous genes, including ripening-related transcription factors (TFs), fruit-related microRNAs, DNA methylation and chromatin remodeling. It is known that various TFs, such as MADS-domain, MYB, AP2/ERF and SBP/SPL family proteins play key roles in modulating ripening. However, little attention has been given to members of the large NF-Y TF family in this regard, although genes in this family are known to have important functions in regulating plant growth, development, and abiotic or biotic stress responses. In this study, the evolutionary relationship between Arabidopsis thaliana and tomato (Solanum lycopersicum) NF-Y genes was examined to predict similarities in function. Furthermore, through gene expression analysis, 13 tomato NF-Y genes were identified as candidate regulators of fruit ripening. Functional studies involving suppression of NF-Y gene expression using virus induced gene silencing (VIGS) indicated that five NF-Y genes, including two members of the NF-YB subgroup (Solyc06g069310, Solyc07g065500) and three members of the NF-YA subgroup (Solyc01g087240, Solyc08g062210, Solyc11g065700), influence ripening. In addition, subcellular localization analyses using NF-Y proteins fused to a green fluorescent protein (GFP) reporter showed that the three NF-YA proteins accumulated in the nucleus, while the two NF-YB proteins were observed in both the nucleus and cytoplasm. In this study, we identified tomato NF-Y genes by analyzing the tomato genome sequence using bioinformatics approaches, and characterized their chromosomal distribution, gene structures, phylogenetic relationship and expression patterns. We also examined their biological functions in regulating tomato fruit via VIGS and subcellular localization analyses. The results indicated that five NF-Y transcription factors play roles in tomato fruit ripening. This information provides a platform for further investigation of their biological functions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 79 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 1%
China 1 1%
Unknown 77 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 18%
Researcher 14 18%
Student > Master 10 13%
Student > Doctoral Student 7 9%
Professor > Associate Professor 6 8%
Other 7 9%
Unknown 21 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 37 47%
Biochemistry, Genetics and Molecular Biology 14 18%
Veterinary Science and Veterinary Medicine 1 1%
Chemical Engineering 1 1%
Unspecified 1 1%
Other 2 3%
Unknown 23 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 January 2016.
All research outputs
#13,453,089
of 22,837,982 outputs
Outputs from BMC Genomics
#5,002
of 10,655 outputs
Outputs of similar age
#189,389
of 393,726 outputs
Outputs of similar age from BMC Genomics
#125
of 264 outputs
Altmetric has tracked 22,837,982 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,655 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,726 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 264 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.